Probability as a measure

Outline i) What is a probability? 2) Measures and integrals 3) Densities 4) Probability spaces

What is probability?
Two common answers:

1) Frequentist answer: Relative frequency over many repetitions of ^a given experiment 2) Bayesian answer: Degree of belief that something is true, or will happen Many disagreements, e.g. about what kinds of thin ve can meaningfully assign prob. to Prob Die roll lands on 4 . Prob. (Surgery is successful) . Prob. (Harris wins upcoming election) Prob Subatomic particle has predicted mass \cdot Pcob. (P = NP) $\begin{array}{ccc} \nabla \cdot b & (\begin{array}{ccc} \lambda & 0 \\ 0 & \lambda \end{array})^T & \Delta b & \Delta b & \Delta d & \Delta d$ B ayesians get mileage by putting probes on everything. Frequentists try to avoid this Many controversies about this!

Mathematical Probability

For
\n
$$
f_{bc}
$$
 h_{esc} d_{sing} *lements* $donit$ *extend* to f_{bc} *math* m *the mathematical construct* of *probability* M *theematical answer*: A *function* P *mapping (some) subset subset subset subsets* of a *simple space* X to $[0, 1]$, *which is* $ad/diftive$ *over* $dispint$ *sets*: $P\left(\bigcup_{i=1}^{m} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ *if* $A_i \cap A_j = \emptyset$, $a \cap a \neq b$ *and has* $P(X) = 1$

Originally invented to analyze games of chance Classical theory for discrete events defined by Laplas

Problem remained for continuous variables ^e ^g treatment of pathological sets conditioning on probability zero events

Kolmogorov ¹⁹³³ recognized probability is ^a special case of ^a measure expectation is an integral against ^a prob measure

Measure theory basics

Measure theory is a rigorous grounding for probability theory $(subject of 205A)$ $Simplifies$ notation & clarifies concepts, especially around integration conditioning Given a set \mathcal{X}_1 a measure μ maps subsets $A \subseteq \chi$ to non-negative numbers $\mu(A) \in [0, \infty]$ Example χ countable (e.g. $\chi = \mathbb{Z}$) Counting measure $\#(A) = \# \text{ points in } A$ Example $\chi = \mathbb{R}^n$
Lebesque measure $\lambda(A) = \int -\int dx, -dx,$ $=$ Volume (A) Standard Gaussian distribution: $P_z(A) = P(z \in A)$ where $Z \sim N(0, 1)$ = $\int_{A} \phi(x) dx$ $\phi(x) = \frac{e^{-x/2}}{\sqrt{2\pi}}$ N_B Because of pathological sets, $\lambda(A)$ can only be defined for certain subsets AER

In general, the domain of a measure A

\nis a collection of subsets
$$
\overline{J} \subseteq 2^X
$$
 (power set)

\nThe formula satisfy certain closure properties

\n(technical term: σ -field) (not important for us)

\nQIL: $A \in \mathcal{F}$

\nQIL: $A \in \mathcal{F}$ then $X \setminus A \in \mathcal{F}$

\nEx: X countable, $\overline{J} = 2^X$

\nEx: X countable, $\overline{J} = 2^X$

\nEx: $X = R^n$, $\overline{J} = 8$ or left of the following equations.

$$
EX: \chi = \mathbb{R}^{n} \qquad J = \mathbb{R}^{n}
$$

$$
S = \text{smallest} \qquad \sigma-\text{field} \qquad \text{meltating all open rectangles}
$$

$$
(a_{1}, b_{1}) \times \cdots \times (a_{n}, b_{n}) \qquad \text{a.e. } b_{i} \in b_{i} \qquad \forall i
$$

Given a meshrable space
$$
(X, \pm)
$$
 a measurable

\nis a $mp M : \pm \rightarrow [0, \infty]$ with

\n
$$
M(\bigcup_{i=1}^{m} A_{i}) = \sum_{i=1}^{m} m(A_{i}) \text{ for disjoint } A_{i}, A_{i} \in \pm
$$
\n
$$
M(\emptyset) = 0
$$
\n
$$
M \text{ probability } meson \text{ if } M(X) = 1
$$

define integrib that put Measures let us $weight$ $n(A)$ \therefore $A \subseteq \chi$

Examples:

\nCounting:
$$
\int f d\theta = \sum_{x \in X} f(x)
$$
 Lebesgue integral

\nLebesgue: $\int f d\lambda = \int \cdots \int f(x) dx - dx_n$

\nGrassien: Note $\int 1_A (x) dP_g(x) = P_g(A) = \int 1_A \phi dx$

\nBy extension,

\n $\int f dP_g = \int f(x) \phi(x) dx = \mathbb{E} [f(\tau)]$

\nTo evaluate $\int f dP_g$ can't always equal to $\frac{1}{3} \sinh x$

\nIt is not not possible to find the edges.

\nHow we do this?

Densities

$$
\lambda \quad \text{and} \quad \rho \quad \text{above} \quad \text{are} \quad \text{closely} \quad \text{related.} \quad \text{What to} \quad \text{make} \quad \text{this} \quad \text{precise.}
$$

Given
$$
(X, F)
$$
, two means we have P , m

\nWe say P is absolutely continuous with M

\nif $P(A) = 0$ whenever $M(A) = 0$

Notation :
$$
P_{cc,M}
$$
 or we say M dominates P

If
$$
P \ll \mu
$$
 then (under mild conditions) we can always define a density function

\n
$$
\rho: \chi \to [0, \infty) \text{ with}
$$
\n
$$
P(A) = \int \rho(x) d\mu(x)
$$
\n
$$
\int f(x) dP(x) = \int f(x) \rho(x) d\mu(x)
$$
\nSometimes with

\n
$$
\frac{\partial f(x)}{\partial x} = \int f(x) \rho(x) d\mu(x)
$$
\nSo $P(A) = \frac{dP}{dx}(x)$, called

\n
$$
\frac{R}{dx} = \frac{N}{dx} \int f(x) dx
$$

Densties are very useful:

\nThus
$$
\int f(x)d\theta(x)
$$
 into something we know how to evaluate, such as

\n1) $\int f(x)\rho(x)dx$ (*X* continuous, $x \in \mathbb{R}^{n}$)

\n2) $\int f(x)\rho(x)dx$ (*X* continuous, $x \in \mathbb{R}^{n}$)

\n3) $\sum_{x \in X} f(x)\rho(x)$ (*X* discrete, *X* countably

\n4) $\int f(x)dx$ (x discrete, *X* countably

\n5) $\int f(x)dx$ (x bounded) probability mass function (pm)

\n6) $\int f(x)dx = \int f(x)dx$ (tan x is a constant, and x is a constant, and

Problem setup may have many random outcomes
\nwith complex relations they be an other
\nConvenient to start with abstract outcomes are
$$
\Omega
$$

\n: represents "everything that happens"
\n: quantifies of interest are functions of ω
\nLet $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space
\n $\omega \in \Omega$ called outcone
\n $\omega \in \Omega$ called outcone
\n $\mathbb{P}(A)$ called probability of A
\n $\mathbb{P}(A)$ called probability of A
\n $\mathbb{P}(X \in \mathbb{B}) = \mathbb{P}(\{\omega : \chi(\omega) \in \mathbb{B}\})$
\n $= \mathbb{Q}(\mathbb{B})$
\n $\mathbb{Q}(\mathbb{B})$ is the push-forward of $\mathbb{P}: \mathbb{Q}(\mathbb{B}) = \mathbb{P} \times \mathbb{P}(\mathbb{B})$
\n $\mathbb{P}(\mathbb{B}) = \mathbb{P}(\{\omega : \chi(\omega) \in \mathbb{B}\})$
\n $\mathbb{P}(\mathbb{B}) = \mathbb{P}(\{\omega : \chi(\omega) \in \mathbb{B}\})$
\n $\mathbb{P}(\mathbb{B}) = \mathbb{P}(\{\omega : \chi(\omega) \in \mathbb{B}\})$
\n $\mathbb{P}(\mathbb{B}) = \mathbb{P}(\mathbb{B} \times \mathbb{B})$
\n $\mathbb{P}(\mathbb{B}) = \mathbb{P}(\mathbb{B} \times \mathbb{B})$

Idea applies more generally: if m measure on x , $f: \chi \rightarrow \mathcal{Y}$ induces new measure $\nu(\mathbb{B}) = \mu(\mathbb{f}^{-1}(\mathbb{B}))$ Can write events involving many R.US $P(X > Y > Z \ge 0) = P(\{\omega : \cdots\})$

The expectation is an integral w.r.t.
$$
P
$$

 $IF[F(X,y)] = \int_{R} f(X(\omega), Y(\omega))dIP(\omega)$

To do real calculations we must eventually boil IP or IE down to concrete integrals/sums/et.

