Statistical models and decisions Outline 1) Statistical models

2) Estimation 3) Comparing estimators

Coin flipping

<u>Recall</u>: 48 humans tossed coins n = 350,757 total times X = 178,079 landed same-side up.

$$\frac{Model 1:}{All flips independent; with same probability $\Theta \in (0,1)$

$$\Rightarrow X \sim P_{\Theta} = Binom(n, \Theta)$$

$$\Theta indexes P known inknown (varies over model)$$

$$Probability mass function $p_{\Theta}(x) = (x) \Theta^{x}(1-\Theta)^{n-x}$
for $x = 0, 1, ..., n$

$$P = \begin{cases} P_{\Theta} : \Theta \in (0, 1) \end{cases}$$

$$\frac{Model 2:}{P_{\Theta}} = F_{\Theta} = G_{\Theta}(0, 1) \\ F_{\Theta} : \Theta \in (0, 1) \end{cases}$$

$$\frac{Model 2:}{P_{\Theta}} = F_{\Theta} = G_{\Theta}(0, 1) \\ F_{\Theta} : \Theta \in (0, 1) \\ F_{\Theta} : \Theta \in (0,$$$$$$

Parametric vs. Nonparametric
Parametric model dists indexed by parameter
$$\Theta \in \Theta$$

 $P = \{P_{\theta} : \Theta \in \Theta\}$
Typically $\Theta \leq \mathbb{R}^{d}$, d called model dimension
Use $P_{\Theta}(\cdot)$, $E_{\Theta}(\cdot)$ to denote corresp. quantities
Nonparametric model no natural way to index P
Still usually makes assumptions, e.g.
- independence
- shape constraints (e.g. Phane & density on P_{+})
 $E_{Xample} = X_{1,...,X_{n}} \stackrel{id}{\sim} P$ P any distr. on TR
 $P = \{P^{n} : P \text{ is a distr. on } R_{+}^{2} (X = (X_{1,...,X_{n}}) \sim P^{n})$
Boundary between parametric G non-parametric models
is somewhat shaggy. Which is Model 3?
We can use "parametric notation" $P = \{P_{\Theta} : \Theta \in \Theta\}$
without loss of generality (could take $\Theta = P, \Theta = P$)

Estimation

Observe $X \sim Binom(n, \theta)$ $\theta \in (0, 1)$ unknown Ask: What is Θ ?

Bayesian answer: Assume O random with known prior (posterior) distribution for O given X

Frequentist answer: Inductive behavior
Find a method for using X to estimate O, e.g.
$$\delta(x) = \chi_n$$

Show it generally works well for any O
Doesn't really answer question about this O and this $J(x)$

General setup Model
$$\mathcal{P} = \{P_{\Theta} : \Theta \in \Theta\}$$
 (or non-par. 3)
Estimand $g(\Theta)$ (or $g(P)$)

Observe X, calculate estimate
$$\delta(x)$$

 $\delta(\cdot)$ called estimator.
We want to evaluate & compare estimators

Loss and Risk

Loss function
$$L(\theta, d)$$

Disutility of guessing $g(\theta) = d$
Typically non-negative, with $L(\theta, d) = 0$ iff $d=g(\theta)$
[Different for every realization]
Squared error loss: $L(\theta, d) = (d - g(\theta))^2$
Risk function: expected loss of an estimator
 $R(\theta; \delta(t)) = \mathbb{E}_{\theta} [L(\theta, \delta(x))]$
Ktells us which parameter value
is in effect, NOT what
randomness to integrate overth
Risk for squerror loss is mean squared error (MSE)

 $MSE(\Theta; \delta(\cdot)) = \mathbb{E}_{\Theta}\left[\left(J(X) - g(\Theta)\right)^{2}\right]$

Binomial example

What is $MSE(\Theta; \delta_0)$? $(\delta_0(x) = \frac{x}{n})$ $IE_{\Theta}[\frac{x}{n}] = \Theta$ (unbiased) $\Rightarrow MSE(\Theta; \delta_0) = IE_{\Theta}[(\frac{x}{n} - \Theta)^2]$ $= Var_{\Theta}(\frac{x}{n})$ $= \frac{1}{n} \Theta(1 - \Theta)$ Other possibilities (based on adding $\int_{\sigma}^{\sigma} sendo - flips^{-1}$) $\delta_1(x) = \frac{x+i}{n+2}$ $\delta_2(x) = \frac{x+2}{n+4}$ $\delta_3(x) = \frac{x+i}{n}$

Mean squared error for binomial estimators (n=16)

θ

$$\frac{Comparing estimators}{We want to choose J to minimize R}$$

$$\frac{Lower for the choose J to minimize R}{Lower for the choose J to minimize R}$$

$$\frac{Lower for the choose J to minimize R}{Lower for the box for some for the box for the dominates}$$

$$\frac{Lower for the binomial example?}{Lower for the binomial example?}$$

Resolving ambiguity
Main strategies to resolve ambiguity:
1) Summarize risk function by a scalar:
a) Average-case risk
Minimize
$$\int R(\theta; \delta) d\pi(\theta)$$

for some measure π , called prior
If π is probability measure,
same as $\mathbb{E}_{\theta \sim \pi} \left[R(\theta; \delta) \right]$
 \longrightarrow Bayes estimator
Binomial: δ_1 is Bayes with $\pi = \lambda$ on $[0,1]$
 δ_2 also Bayes with $\pi = Beth(2,2)$
b) Worst-form airly

2) Restrict choices of estimator a) Restrict to unbiased estimators: $E_0[S(x)] = g(0)$ for all Θ Binomial: S_0 is best unbiased estimator