Completeness

Outline 1) Completeness 2) Ancillarity ³ Basu's Theorem Completeness

 Det $T(x)$ is complete for $P = \{P_{\theta} : \theta \in Q\}$ $if \mathbb{E}_{\Theta} f(\tau(x)) = O \qquad \forall \Theta$ \Rightarrow $f(T) \stackrel{a.s.}{=} 0$ $\forall 0$ Name comes from ^a prior notion that P_{θ} : $\theta \in (4)$ is complete basis $w +$ inner product $\langle f, P_0' \rangle = \int f(t) dV_0(t)$ see HW 3 E_Y $(C_{out}d)$ Laplace location family has $min_{n|s}$ suff $stat_{s}$ $S = (X_{(i)})_{i=1}$. Complete $N_{o}:$ Let $M(S)$ = median(x) $\overline{X}(s) = \frac{1}{n} \sum X_i$ $E_{\theta} \overline{X} = E_{\theta} M = \theta (b_{\gamma} symmetry)$ $E_{\theta} \left[\overline{\chi}(s) - M(s) \right] = O \qquad \forall \Theta$ $S(x)$ still has "a lot of extra $f|$ uff"

$$
\begin{array}{lll}\n\begin{array}{ll}\n\text{Ex} & X_{1}, \ldots, X_{n} \quad \text{if } U \left[0, \Theta \right] & \Theta \in (0, \infty) \\
\text{Can show} & T(x) = X_{\text{in}} \quad \text{min.} \quad \text{self.} \\
\text{Find } \text{density} & \text{of } T(x): \\
\mathbb{P}_{\theta}(\tau \leq t) = \left(\frac{t}{\theta} \wedge 1 \right)^{n} = \left(\frac{t}{\theta} \right)^{n} \wedge 1 \\
\Rightarrow \rho_{\theta}(t) = \frac{d}{dt} \mathbb{P}_{\theta}(\tau \leq t) \\
\Rightarrow \mathbb{n} \frac{t^{n-1}}{\theta^{n}} 1 \{ t \in \Theta \}\n\end{array}
$$

Suppose
$$
O = \mathbb{E}_{\theta} f(\tau)
$$
 $\forall \theta > 0$
\n $= \frac{n}{\theta^{n}} \int_{0}^{\theta} f(\epsilon) \epsilon^{n-l} d\epsilon \quad \forall \theta > 0$
\n $\Rightarrow \int_{0}^{\theta} f(\epsilon) \epsilon^{n-l} d\epsilon = O \quad \forall \theta > 0$
\n $\Rightarrow f(\epsilon) \epsilon^{n-l} = O \quad \text{a.e. } \epsilon > 0$

Def Assume
$$
P = \{P_{i} : e \in S\}
$$
 has densities
\n $P_{i}(x) = e^{x \cdot T(x) - A(x)} h(x)$ (a $5 \neq 0$,
\n $T + T(x)$ satisfies no linear constraint β (a $5 \neq 0$,
\nand T contains an open set, we say
\n 9 is $\frac{F_{u}||_{-}m_{u}k}{\frac{F_{u}||_{-}m_{$

$$
Diagonal
$$

T(x) definitely complete for (A) $M_{\alpha y}$ be not for $(B)(C)$

Theorem
$$
\mathbb{E}\left\{\int f(x) \text{ complete sufficient}
$$

\nFor \mathcal{F} then $T(x)$ is minimal
\n
\n**Case** ρ_{ha} for angleness ρ_{noise} is shown to this
\nas. ϵ_{final} by showing they have $= \epsilon_{\text{model}}$.
\n
\n**See** Assume $S(x)$ is minimal such
\nLet $\overline{T}(S(x)) = \mathbb{E}_{S_x} \left[T(x) \mid S(x) \right]$
\n
\nWe have $S(x) \stackrel{\text{as.}}{=} f(T(x))$ ($S(x)$)
\n
\nLet $g(t) = t - \overline{T}(f(t))$
\n $\mathbb{E}_{\theta}[f(T(x))] = \mathbb{E}_{\theta}[T(x) - \mathbb{E}_{\theta}[f(T(x))]$
\n $= \mathbb{E}_{\theta}T(x) - \mathbb{E}_{\theta}[f(T|S)]$
\n $= \mathbb{E}_{\theta}T(x) - \mathbb{E}_{\theta}[f(T|S)]$
\n $= 0$
\n $\Rightarrow g(T(x)) = 0$ (completeness)

Ancillarity

Two reasons to care about completeness: ¹ Uniqueness of unbiased estimators using ^T II E_{0} $S_{1}(T) = E_{0}$ $S_{2}(T) = g(0)$, $\forall \theta \in \Theta$ 7 hea $E[5 - 5] = 0$ $36 = 5$ We will explore this further next time 2) Basn's theorem: neat way to show independence $\frac{\partial f}{\partial x}$ $V(x)$ is ancillary for \mathcal{P}_{ϵ} $\left\{ P_{\sigma}, \theta \epsilon \omega \right\}$ if its distribution does not depend on θ . (V carries no info. about θ)

(Aside:) Conditionality Principle
\n
$$
\frac{1}{\Gamma f}
$$
 V(x) is ancillary then all inference
\nshould be conditional on $V(x)$
\n[will return to this in testing & CL unit

Basu's Theorem

Theorem (Basu) $\begin{array}{ccc} \begin{array}{cccccccccc} \text{if} & \text{f} &$ $V(x)$ is ancillary for S , then $V(x) \perp \perp \top (x)$ for all $\Theta \in \Theta$ $P_{\text{co}}f$ $W_{G\wedge\tau}$ $P_{G}(veA,TEB) = P(VeA) P(TEB)$ all A,B,B Let $q_{A}(T(x)) = \mathbb{P}_{\mathcal{B}_{\leftarrow}}(V_{\epsilon}A + \tau)$ $\rho_A = \mathbb{P}_{\mathbb{R}}(\bigvee_{\text{encillery}} \epsilon A)$ $E_{\theta} [q_{A}(\tau) - \rho_{A}] = \rho_{A} - \rho_{A} = 0$, $\forall \theta$ \Rightarrow $q_{\mathcal{A}}(\tau) = \rho_{\mathcal{A}}$ $\forall \Theta$ $P_{\mathbf{a}}(VfA, TfB) = \int q_{A}(t) 1\{f \in B\} dP_{\mathbf{0}}(t)$ = $p_A \int 1\{t \in B\} dP_{\Theta}^{T}(t)$
= $P(V \in A) \prod_{\Theta} (T \in B)$

Using Basu's Theorem

Ancillarity, Completeness, Sufficiency are all
properties wrt a family P Independence is a property of a distribution If you can't verify the this hypotheses
for one family, try a different family! $EX. X, ..., X, \stackrel{\text{iid}}{\sim} N(u, \sigma^2)$ $\mu \in \mathbb{R}, \sigma^2>0$ Sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ Sample Variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ Want to show \overline{X} II S² But neither stat. is ancillary or sufficient
in the full famil with M , σ^2 unknown To apply Busu, use family with σ^2 known: $P = \{N(n, \sigma^{2}) : m \in \mathbb{R}\}\$

 I_n \mathcal{F} , \overline{x} is complete sufficient and S^2 is ancillary since $S^2 = \sum (z_i - \overline{z})^2$ for $z_i = X_i - \mu \stackrel{iid}{\sim} \nu(0, \sigma^2)$ not statistics
. but doesn't matter Therefore $\overline{X} \perp S^*$ Conclusion has nothing to do with known or unknown parameters