Completeness

Outline 1) Completeness 2) Ancillarity 3) Basis Theorem Completeness

Def T(x) is complete for P= [P:060] $if \quad E_0 f(\tau(x)) = 0$ AO \Rightarrow f(T) = 0 40 Name comes from a prior notion that $\mathcal{P}^{T} = \{\mathcal{P}^{T}: \Theta \in \Theta\}$ is "complete basis" with inner product $\langle f, \mathcal{P}^{T}_{\Theta} \rangle = \int f(t) d\mathcal{P}^{T}_{\Theta}(t) \int (see Hw 3)$ Ex. (Contid) Laplace location family has minimal suff stat. $S = (X_{(i)})_{i=1}^{n}$. Complete? No: Let M(s) = median(x) $\overline{X}(s) = \frac{1}{2} \mathcal{E} X_i$ $E_{0}\overline{X} = E_{0}M = \Theta (b_{y} symmetry)$ $\mathbb{E}_{\Theta}\left[\overline{X}(s) - M(s)\right] = O \quad \forall \Theta$ S(x) still has "a lot of extra flut"

$$E \times X_{1,...,X_{n}} \stackrel{iid}{\longrightarrow} U[0,0] \quad \Theta \in (0,\infty)$$
Can show $T(x) = X_{(n)}$ min. suff. Complete?
Find density of $T(x)$:

$$P_{\Theta}(T \leq t) = \left(\frac{t}{\Theta} \wedge 1\right)^{n} = \left(\frac{t}{\Theta}\right)^{n} \wedge 1$$

$$\Rightarrow P_{\Theta}(t) = \frac{d}{dt} P_{\Theta}(T \leq t)$$

$$= n \frac{t^{n-1}}{\Theta^{n}} - 1 \leq t \leq 0 \leq 0$$

Suppose
$$0 = E_0 f(\tau)$$
 $\forall \theta > 0$
 $= \frac{n}{\theta^n} \int_0^{\theta} f(t) t^{n-1} dt \quad \forall \theta > 0$
 $\Rightarrow \int_0^{\theta} f(t) t^{n-1} dt = 0 \quad \forall \theta > 0$
 $\Rightarrow f(t) t^{n-1} = 0 \quad \text{a.e. } t > 0$

Def Assume
$$P = \{P_{2} : 2 \in \Xi\}$$
 has densities
 $p_{2}(x) = e^{\gamma T(x) - A(x)} h(x)$
If $T(x)$ satisfies no linear constraint $\binom{Z}{P^{T}(x)} e^{x} n$
and Ξ contains an open set, we say
 S is full-mak
If S is not full-rank we say it is curved
[Note: If $T(x)$ satisfies linear constraint, then
 S might still be full-rank for a lower-dim.
sufficient statisfie]
Proof in Lehaun & Romme, The 4.81
Theorem If S is full rank then
 $T(x)$ is complete sufficient
Proof idea wlay $T(x) = x$, $p_{1}(x) = e^{\gamma (x - A(x))}$, $O \in \Xi^{0}$
Write $f(x) = f^{+}(x) - f^{-}(x)$, for $f^{+}, f^{-} \ge 0$
 $Se^{\gamma x} f^{+}(x) dm(x) = Se^{\gamma x} f^{-}(x) dm(x)$
MGF for $\gamma^{+} \sim \frac{f^{+}(x)}{S^{+}dm}$
Uniqueness of MGFs $\Rightarrow \gamma^{+} \cong \gamma - \Rightarrow f^{+} as f^{-}$

T(X) definitely complete for (A) Maybe not for (B),(C)

Theorem If
$$T(x)$$
 complete sufficient
for \mathcal{G} then $T(x)$ is minimal
(rance plus for completeness proofs: show two things are
a.s. equal by showing they have expectation.
Proof Assume $S(x)$ is minimal suff
Let $\overline{T}(S(x)) = \mathbb{E}_{\mathcal{G}}\left[T(x) \mid S(x)\right]$
(Let $\overline{T}(S(x)) \stackrel{a.s.}{=} T(x)$
We have $S(x) \stackrel{a.s.}{=} T(x)$
(S minimal suff)
Let $g(t) = t - \overline{T}(f(t))$
 $\mathbb{E}_{\mathcal{G}}\left[g(T(x))\right] = \mathbb{E}_{\mathcal{G}}T(x) - \mathbb{E}_{\mathcal{G}}\left[\overline{T}(S(x))\right]$
 $= \mathbb{E}_{\mathcal{G}}T(x) - \mathbb{E}_{\mathcal{G}}\left[\mathbb{E}[T|S]\right]$
 $= O$
 $\Rightarrow g(T(x)) \stackrel{a.s.}{=} O$ (completeness)

Ancillarity

Two reasons to care about completeness: i) Uniqueness of unbiased estimators using T If $E_0 S_1(T) = E_0 S_2(T) = g(0)$, $\forall \theta \in \Theta$ Then $E_0[S_1 - S_2] = 0 \Rightarrow S_1 \stackrel{a.s.}{=} S_2$ [We will explore this further next time] 2) Basis theorem: next way to show independence Def V(X) is <u>ancillary</u> for $P_{-}[P_0: \Theta \in \Theta]$ if its distribution does not depend $O = O = (V \text{ carries no info. about } \Theta)$

Basu's Theorem

Theorem (Basn) If T(X) is complete sufficient and V(X) is ancillary for S, then $V(x) \perp T(x)$ for all $\Theta \in \Theta$ Proof Want IP(VEA, TEB) = IP(VEA) IP(TEB) all A, B, O Let $q_A(T(x)) = P_A(V \in A | T)$ PA = Pro(VeA) $\mathbb{E}_{\Theta}[q_A(T) - \rho_A] = \rho_A - \rho_A = 0, \forall \Theta$ $\implies q_{\mathcal{A}}(\tau) \stackrel{q.s.}{=} \rho_{\mathcal{A}} \quad \forall \Theta$ $P_{A}(V \in A, T \in B) = \int q_{A}(t) 1 \{t \in B\} dP_{O}(t)$ $= \rho_{A} \int 1_{\{t \in B\}} dP_{\Theta}^{T}(t)$ = $P(V \in A) \prod_{0} (T \in B) \boxtimes$

Using Basu's Theorem

Ancillarity, Completeness, Sufficiency are all properties with a family P Independence is a property of a distribution If you can't verify the this hypotheses for one family, try a different family! $\underline{E_X} \cdot X_{1,\dots,X_n} \stackrel{\text{id}}{\sim} N(n,\sigma^2) \quad \mu \in \mathbb{R}, \sigma^2 > 0$ Sample mean $\overline{X} = \frac{1}{n} \stackrel{\frown}{\underset{i=1}{\overset{\frown}{\sum}} X_i$ Sample Variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ Want to show X 11 S? But neither stat. is ancillary or sufficient in the full famil with M, or unknown y To apply Basa, use family with of known: $\mathcal{P} = \{ N(m, \sigma^2)^n : m \in \mathbb{R} \}$

In \mathcal{P} , \overline{X} is complete sufficient and S^2 is ancillary since $S^2 = \sum (\overline{z_i} - \overline{z})^2$ for $\overline{z_i} = X_i - M \stackrel{id}{\sim} N(0, \sigma^2)$ Therefore $\overline{X} \perp L S^2$ Conclusion has nothing to do with "Enown" or "unlenown" parameters]