Outline

D Hierarchical Bayes ² Markov Chain Monte Carlo ³ Gibbs Sampler

Hierarchical Bayes
\nFinally power of Bayes is realized in large,
\ncomplex problems with repeat structure,
\nallowing us to pool information across
\nmay observations.]
\n
\nEx Predict a belief "true"圆ting weing
\nfrom ni at-bats. X: # of hits vBinom(n; 0;
\n
$$
P_{col} \text{info} \text{acios} p \text{layers} i=1, ..., m \text{win hierarchical model}
$$
\n
$$
\alpha, \beta \sim \lambda_o(\alpha, \beta)
$$
\n
$$
\theta_i/g_i \text{B} \text{Beta}(\alpha, \beta) \text{ism}
$$
\n
$$
\chi_i' \theta_i' \text{Beta} \text{Binom}(n_i, \theta_i) \text{ism}
$$
\n
$$
= \mathbb{E} \left\{ \frac{\theta_i}{\lambda_i} + \frac{\lambda_i' \theta_i'}{\lambda_i} \frac{\sin \theta_i \theta_i}{\lambda_i + \frac{\lambda_i' \theta_i'}{\lambda_i}} \right\}
$$
\n
$$
= \mathbb{E} \left\{ \frac{\theta_i' \lambda_i' \text{Binom}(n_i, \theta_i)}{\lambda_i + \frac{\lambda_i' \theta_i'}{\lambda_i}} \right\}
$$
\n
$$
= \mathbb{E} \left\{ \frac{\theta_i' \lambda_i' \text{Span}(n_i, \theta_i)}{\lambda_i + \frac{\lambda_i' \theta_i'}{\lambda_i}} \right\}
$$
\n
$$
= \mathbb{E} \left\{ \frac{\theta_i' \lambda_i' \text{Span}(n_i, \theta_i')}{\lambda_i' + \frac{\lambda_i' \theta_i'}{\lambda_i}} \right\}
$$
\n
$$
\frac{\text{Infinite: Use all X...X on equivalent model where we\nmanjialise over α, β and just write a non-
\ntoable to infinite or computation of strategies 3.
$$

Gaussian Hierarchical Model:

$$
\tau^{2} \sim \lambda_{o}
$$

\n
$$
\theta_{i} | \tau^{2} \stackrel{\text{iid}}{\sim} N(o, \tau^{2}) \qquad i \in J
$$

\n
$$
X_{i} | \tau^{2} \theta \stackrel{\text{iid.}}{\sim} N(o_{i}, 1)
$$

$$
\begin{aligned}\n\delta(x_i) &= \mathbb{E}\left[\theta_i \mid x\right] \\
&= \mathbb{E}\left\{\mathbb{E}\left[\theta_i \mid x, \tau^2\right] \mid x\right\} \\
&= \mathbb{E}\left[\frac{\tau^2}{1+\tau^2} x_i \mid x\right] \\
&= \mathbb{E}\left[\frac{\tau^2}{1+\tau^2} \mid x\right] \cdot X_i\n\end{aligned}
$$

Linear shrinkage estimate,

\nBayes-optimal shrindage estimated from data

\nLikelihood for
$$
\tau^2
$$
: $magnalize over \Theta_i$

\n X_i $l\tau^2 \sim N(0, l+\tau^2)$

\n $\Rightarrow \frac{1}{d} ||X||^2 \sim \frac{l+\tau^2}{d} X_d^2$

\n $\sim \left(l+\tau^2, \frac{2+2\tau^2}{d}\right)$ notation

Define $\zeta(\tau^2) = \frac{1}{1+\tau^2}$ "amount of shrinkage" $\Rightarrow \exists (x) = (1 - \underbrace{\mathbb{E}[x \mid x]}) X_i$ learned from entire data set $X(S \sim N_d(o, \frac{1}{5}I_d) = \frac{1}{(2\pi)^{d/2}} e^{-\|X\|^2/(2/5)}$

$$
\propto_{\xi}^{\xi} \xi^{d/2} e^{-\xi \|x\|^2/2}
$$

\n
$$
\zeta_{\alpha} \wedge \frac{1}{s^2} \chi_{k}^{3} = \Gamma(\frac{k}{2}, \frac{2}{s}) = \frac{(s^3)^{k/2}}{\Gamma(k)}
$$
\n

\n\n $\zeta_{\alpha} = \frac{1}{s^2} \chi_{k}^{3} = \frac{1}{s^2} \left(\frac{k}{2}, \frac{2}{s^2} \right) = \frac{(s^3)^{k/2}}{\Gamma(k)}$ \n

$$
\Rightarrow \zeta | ||x||^{2} \propto \zeta \frac{1}{s^{2}+||x||^{2}} - 1 e^{-\frac{(s^{2}+||x||^{2})^{2}}{2}}
$$

$$
E[S \mid ||x||^{2}] = \frac{1}{2^{2} + ||x||^{2}} \approx d(1 + \tau^{2}) + O(d^{\frac{1}{2}})
$$

$$
Psendo-dat-\n
$$
\begin{bmatrix}\nmigh+ & \text{Wont} + b & \text{truncated} & \text{prior to } [0, 1] \\
\text{min of} & \text{if } d & \text{small }]\n\end{bmatrix}
$$
$$

These are directed graphical models. Imples
\nthe distribution may be factored with one
\nfactor for each vertex in a DAG (v, E)
\n
$$
\rho(z_1, ..., z_{|v|}) = \prod_{i=1}^{|V|} \rho_i(z_i | z_{R(i)})
$$
\nFor this model,
\n
$$
\rho(z^2, \theta_1, ..., \theta_m, X_1, ..., X_m)
$$
\n
$$
= \rho(z^2) \cdot \prod_{i=1}^{m} \rho(i, z^2) \cdot \prod_{i=1}^{m} \rho(x_i | \theta_i)
$$

Markov Chain Monk Carlo

Hiera *cal models* can get very complex *very*
$$
fest
$$
.

\n $Creetig$ bij *computational* $headaches$

\n $\lambda(\theta/x) = \int_{\Omega} (\alpha) \lambda(\theta) \leq$ usually nice $\int_{\Omega} \beta(s) \lambda(\theta) dS$

Computational strategy: set up a Markov chain with stationary disk of
$$
\rho_{\theta}(x) \lambda(\theta)
$$
, run it to get approximate samples from $\lambda(\theta | x)$

Definition: A (stationary) Markov chain with
$$
trans.
$$

\nkernel $Q(y|x)$ and initial dist. $\pi_o(x)$ is a sequence of r.v.s $X^{(o)} \times Y^{(o)}$, where $X^{(o)} \times \pi_o$

\nand $X^{(t+1)} \mid X^{(o)}, X^{(t)} \sim Q(\cdot | X^{(t)})$

\n $Q(y|x) = \mathbb{P}(X^{(t+1)} = y \mid X^{(t)} = x)$

\nMarquend dist. of $X^{(0)}$:

\n $\pi_i(y) = \mathbb{P}(X^{(i)} = y) = \int_X Q(y|x) \pi_o(x) \, dx$

\nThis is a directed graphical model:

\n $(X^{(i)}) \rightarrow (X^{(i)}) \rightarrow (X^{$

If
$$
\pi(y) = \int_{R} Q(y|x) \pi(x) d\mu(x)
$$
 we say π

\nis a stationary distribution for Q

\nSufficient condition is defined binomial

\nSubstituting the $\pi(x) Q(y|x) = \pi(y) Q(x|y) \quad \forall x, y$

\n $\Rightarrow \int_{R} Q(y|x) \pi(x) d\mu(x) = \pi(y) \int_{R} Q(x|y) d\mu(x) = \pi(y)$

\nAt M -below chain with defined boundary

\nAt M -below chain with defined boundary

\n $\pi(x^m, x^m) \triangle (x^m, x^m) \triangle (x^m, x^m)$ if $\pi_0 = \pi$

\n $\pi(x^m, x^m) = \frac{\pi(x^m, x^m) \cdot \pi(x^m, x^m)}{\pi(x^m, x^m)} = \frac{\pi(x) Q(y|x)}{\pi(y)}$

\nIt does not include: $\forall x, y \exists n : \rho(x^m, x^m) \times \pi(x^m, x^m) \ge \pi(x^m, x^m)$

\nIt does not include: $\forall x, y \exists n : \rho(x^m, x^m) \times \pi(x^m, x^m) \ge \pi$

\nThen $\mathcal{L}(x^m) \triangleq \pi$ (in $\pi \vee \text{diam}^m$), π_0 (in $\pi \vee \text{diam}^m$), π_0

\nProof. *beyned* single of π_0 (chain "forgels" π_0)

\nProof. *beyned* single of π_0 (chain "forgels" π_0)

\nHint. *Storder* of the strong

\nHint. *Storder* of the the

\nHint. *Storder* of the

Gibbs sompler Parameter vector $\Theta = (\Theta_{y}, \Theta_{d})$ Algorithm I_n itialize $\theta = \Theta^{(0)}$ For $t = 1, ..., T$: For $j = 1, ..., d$: Sample $\Theta_{j} \sim \lambda(\Theta_{j} | \Theta_{ij} \times \})$ $\left\{\begin{matrix} x \\ y \end{matrix}\right\}$ Record $\theta^{(t)} = \Theta$ Veriations on $(*)$: Update one random coordinate $J^{\prime\prime}$ Unit {0, ..., d Update coordinates in random order Advantage for hierarchical priors only need to sample low dimensional conditional dists $\lambda(\theta_i | \theta_{ij} | X) \propto \rho(\theta_i | \theta_{i(i)}) \cdot \pi_{i(i \in R(i)} \rho(\theta_i | \theta_{i(i)})$ Especially easy it using conjugate priors at all levels, often can be parallelized.

MCMC in Practice In theory: Pick any initialization $\theta^{(0)}$ and valid kernel
 Q_1 sample long enough map $\theta^{(4)}$ $\approx \lambda(\theta | x)$ Do it sysin N more times mus N samples from NOIx) In practice, how do we know we've sampled long enough? Trace plots: Show how fast the MC mixes $GOOD$ $(?)$ $B A D$ $GRE4T$ Can be deceived! Esp. for bimodal posterior $\hat{\lambda}(\theta)$ (x) Θ R_{thinning}
makes sandepentent Estimate posterior based $B^{\text{un-}}$ on $\{ \theta_i^{(g)}, \theta_j^{(g+s)}, \dots, \theta_i^{(g+1)s} \}$ 45.5 initialization $P_{\text{o s}}$ terior mean: $\frac{N}{N+1}\sum_{k=0}^{N}\theta_{s}^{(B+ks)}$ $\mathbb{E}[\theta_{s} | X]$

Implementation details make!

\n
$$
\theta_{1,} \theta_{2} \stackrel{ind.}{\sim} N(0, 1)
$$
\n
$$
X_{i}^{j} \theta_{i} \stackrel{ind.}{\sim} N(\theta_{i} + \theta_{2, i}) \stackrel{i=1, ..., n}{\rightarrow}
$$
\n
$$
\theta_{\left(\frac{\theta_{2}}{X}\right)} \sim N_{i} \left(0, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \right)
$$
\n
$$
\theta(\overline{X} \sim N_{2} \left(m^{\left(\overline{X}\right)}, \Sigma(X) \right)
$$
\n
$$
m(\overline{X}) = {i \choose i} (2 + \frac{1}{4})^{-1} \overline{X} = \frac{n \overline{X}}{2n+1} {i \choose i}
$$
\n
$$
= \frac{n+1}{2n+1} \left(\frac{1}{2n} - \frac{n}{2n+1} \right)
$$

Gilbs these
line to mix

$$
6
$$

Empirically

Back to Gaussian hierarchical model

$$
\frac{1}{d}||x||^{2} \sim \frac{1+\tau^{2}}{d} \chi^{2}_{d} \qquad \qquad \frac{1+\tau^{2}}{d} \chi^{2}_{s}
$$
\n
$$
\sim (1+\tau^{2}, \frac{2+2\tau^{2}}{d}) \qquad \qquad \frac{1}{3}||x||^{2}
$$
\nFor any "cessonable" prior, $E[S|X] \approx \frac{d}{||x||^{2}}$

$$
\hat{\Theta}_{\hat{c}} \approx (1-\frac{d}{\|x\|^2})X_{\hat{c}} \approx (1-\hat{S})X_{\hat{c}}
$$

If
$$
\rho^{rior}
$$
 doesn't and ρ^{rior} does not have ρ^{rior} can't have ρ^{rior} can ρ^{rstr} can ρ^{rstr} can ρ^{rstr} can ρ^{rstr} is ρ^{rstr} and ρ^{rstr} is ρ^{rstr} and ρ^{rstr} is ρ^{rstr} and ρ^{rstr} is ρ^{rstr}

Called EmpiricalBayest ^a hybrid approach in which hyper parameters treated as fixed others treated as random