Minimax Estimation

Outline 1) Minimax risk, estimator 2) Least favorable priors 3) Examples

Minimax risk Last idea for choosing an estimator worst case risk minimize sup R(O;5 The minimum achievable sup risk is called the minimax risk of the estimation problem $r^* = \inf_{\delta} s_{\alpha} \rho \quad R(\theta, \delta)$ An estimator δ^* is called <u>minimax</u> if it achieves the minimax $risk, ie.$ $S_{\alpha\beta}$ $R(\theta; s^*)$ = r^* Game theory interpretation: (Minimax game) 1) Analyst chooses estimator d ² Nature chooses parameter ^O to max risk $\frac{N}{N}$: Nature chooses Θ adversarially, not X Compare to Bayes Maximin game 1) Nature chooses prior <> (mixed strategy 2) Analyst chooses estimator to min. (aug) risk We will look for Nature's Nash equil strategy in this problem

Least Favorable Pris's

Key observation: average-case risk < worst-case risk For proper prior 1 the Bayes risk is r_{Λ} = $inf_{s} \int R(\theta; \delta) d\Lambda(\theta)$ $\begin{matrix} 1 & 1 \\ 2 & 0 \end{matrix}$ $K(\Theta, \delta) = K$ If S_A S_{γ} es then $r_A = \int R(\theta; \delta_A) dA(\theta)$ Bayes risk of any Bayes estimator lower bounds r Least favorable prior 15 gives best lower bound : $\Delta^* = \frac{3\pi p}{\Delta}$ Sup risk of any estimator upper bounds ^r Λ \leq Λ \leq \mathfrak{c} \leq \mathfrak{e} $\mathcal{C}(\mathbf{\Theta}^{\cdot}, \mathbf{\delta}^{\cdot})$ $(a_n y)^{1} \Delta$) \sum Idea: try to match upper & lower bounds

Theorem If
$$
r_A = sup_R R(\theta; S_A)
$$
 with
\n $\begin{array}{l}\n\text{Boyes} & \text{cshnator} & \text{S}_A & \text{Hear} \\
(a) & \text{S}_A & \text{is } min \land x \\
(b) & \text{If } S_A & \text{is } min \land x \\
(b) & \text{If } S_A & \text{is } min \land x \\
(c) & \text{A is } least + \text{A.v.} \\
(c) & \text{A is } least + \text{A.v.} \\
(c) & \text{A is } least + \text{A.v.} \\
(c) & \text{Say} & R(\theta; \delta) \geq \int R(\theta; \delta) \text{A} \Lambda(\theta) \\
\geq \int R(\theta; S_A) \text{A} \Lambda(\theta) \\
= \int R(\theta; S_A) \text{ by assumption} \\
\Rightarrow \text{Say} & R(\theta; S_A) \\
\Rightarrow \text{Say} & R(\theta; S_A$

The above theorem gives a checkable condition: does aug risk = sup risk? mistake on final saying r True if is const. doesn't prove anything 1) $R(\theta; \delta)$ is constant 2) \angle $(\{ \theta : R(\theta, 5_A) = \frac{m_{\theta} x}{5} R(5, 5_A) \}) = 1$

Example (Binomial)
\n
$$
X \sim Binom(n, \theta)
$$
, estimate θ , sq. err.
\nTry Beta(α, β), hope to get one with const.
\n $\delta_{\alpha, \beta}(X) = \frac{\alpha + X}{\alpha + \beta + n}$. Try $\alpha = \beta$ (symmetric)

$$
MSE(\theta; \delta_{x,\alpha}) = \left(\frac{\alpha + \theta_{n}}{a\alpha + n} - \theta\right)^{2} + \left(2\alpha + n\right)^{-2}V_{\alpha f_{\theta}}(x)
$$

\n
$$
= (a\alpha + n)^{-2} \left[\alpha^{2}(1 - a\theta)^{2} + n\theta(1 - \theta)\right]
$$

\n
$$
= (a\alpha + n)^{-2} \left[\left(4a^{2} - n\right)\theta^{2} - \left(4a^{2} - n\right)\theta + \alpha^{2}\right]
$$

\n
$$
\left(\text{Set } \alpha^{*} = \frac{\pi}{4}\right)
$$

\n
$$
= \frac{n/4}{(n + \pi)^{2}}
$$

$$
\Rightarrow \quad \delta^{*}(x) = \frac{\sigma_{12} + x}{\sqrt{1 + n}}
$$
\n
$$
r^{*} = \frac{n}{4(n + n)^{2}}
$$
\n
$$
\Delta^{*} = \beta \text{eta}(\sigma_{12}, \sigma_{12})
$$
\n
$$
\Delta^{*} = \frac{\beta \text{eta}(\sigma_{12}, \sigma_{12})}{\sqrt{1 + \beta^{2}}}
$$
\n
$$
\Delta^{*} = \frac{\beta \text{eta}(\sigma_{12}, \sigma_{12})}{\sqrt{1 + \beta^{2}}}
$$

Lens+ Fawrable Sequence
\nSometimes, there is no least fawrable prior,
\n
$$
X \sim N(\theta, 1)
$$
: LF prior should spread most
\neway where, but that is not a proper prior.
\n
\nLet: A sequence Λ , Λ , Λ , ... is LP
\nif Λ = 30.4° K
\n Λ
\nThus: Suppose Λ , Λ , Λ , ... is a prior sequence
\nand 3 satisfies sup R(e, 5) = lim r.
\nThen -) 5 is minus
\n Θ A., Λ , ... is LP
\n
\nProof: a) Other set \tilde{s} . Then Θ ,
\n $\tilde{s}\varphi$ R(e, \tilde{s}) = $\tilde{s}\varphi$ R(e, \tilde{s}) d Λ ,
\n $\tilde{s}\varphi$ R(e, \tilde{s}) = sup r.
\n $\tilde{s}\varphi$ R(e, \tilde{s}) = log r.
\n

b)
$$
P_{100} = \Lambda
$$

\n
$$
\Lambda = \int R(\theta, \delta) \delta \Lambda(\theta)
$$
\n
$$
\leq \int R(\theta, \delta) \delta \Lambda(\theta)
$$
\n
$$
\leq \int R(\theta, \delta) \delta \Lambda(\theta)
$$
\n
$$
\leq \int R(\theta, \delta) \delta \Lambda(\theta)
$$
\n
$$
\leq \int \frac{1}{\pi} \int_{\Lambda}
$$
\n
$$
\frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} (\theta, T_{\Lambda}) \cdot \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} (\theta, \eta) \cdot d\phi \quad d\phi
$$
\n
$$
= \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} (\theta, \eta) \cdot d\phi \quad d\phi
$$
\n
$$
\frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} \frac{1}{\pi} \int_{\Lambda} (\theta, \eta) \cdot d\phi \quad d\phi
$$
\n
$$
= \int_{\Lambda} \frac{1}{(\frac{1}{\pi} \lambda)^2} \int_{\Lambda} \frac{1}{(\frac{1}{\pi} \lambda)^2} \cdot \int_{\Lambda}
$$
\n
$$
\frac{1}{\pi} \int_{\Lambda}
$$
\n
$$
\frac{1}{\pi} \int_{\Lambda} \frac{
$$

 $\frac{1}{2}$
Dur theorem $\frac{1}{2}$ idea of how to \rightarrow for a problem $\frac{u_{\rho\rho}}{u_{\rho\rho}}$ bound: $\mathcal{I}f'$ of is any estimator then $r^* \leq \sup_{\theta} R(\theta; S)$ (= if S minimax) aver bound: If' \triangle is any prior there r^* z $\int R(\theta, \delta) d\Lambda(\theta)$ $(=$ if $\Delta L F)$

Minimax estimators are very hard to find but minimax bounds are often used in stat Theory to characterize hardness (csp. lower $Ex: Propose$ practical estimator 5 find \triangle for which r_{Λ} close to sup $R(\theta; \delta)$ or same rate, or cugs asymptotically \Rightarrow Conclude \int can't be improved "much" (*) $EX: W$ uantity hardness of a problem by its minimax rate in some asy regime Caveat ^A problem might be easy throughout most of par space but very hard in some bizarre corner you never encounter in practice