Outline ¹ Hypothesis testing 2) Neymon-Pearson Lemma ³ Uniformly most powerful tests

 $M_{y\rho}$ othesis Testing \mathcal{N} ull hypothesis H_o : $\Theta \in \Theta_o$ $('de$ fault") Alternative $hyp.$ H_1 Θ $H_{\gamma\rho}$ otheses should be <u>disjoint</u>: $\Theta_{o} \cap \Theta_{i} = \emptyset$ and $exhaustive$ $\Theta_{o} \cup \Theta_{1} = \Theta$ Want to use data X to learn which includes O Inductive behavior: We either reject H_o (conclude $\Theta \in \Theta$), or $\frac{f_{ai}/f_{o}}{f_{ai}/f_{o}}$ (no conclusion) $l'Accept$ H_0 " ok as technical term, but may confuse) $H_{\textit{opt}}$ called simple if $\Theta_{\textit{opt}} = \{ \theta_{\textit{opt}} \}$ composite ow. Ex $X \sim N(e, 1)$ $H_o: \Theta \leq O$ us $H_i: \Theta \geq O$ (composite us composite) $H_o: \Theta = 0$ us $H_i: \Theta \neq 0$ (simple us composite) E_x $X_{1},...,X_{n} \sim P$ $Y_{1},...,Y_{m} \sim Q$ H_0 : $P = Q$ vs H_i : $P \notin Q$ (composite us. composite)

cnn.ie iEitiiis critical function a.k.a test function x 0 accept Ho IT 0,1 reject w.p.IT reject Ho In practice randomization rarely used x 10,13 In theory simplifies discussions ^A non randomized test partitions into ^R ^x ¹ rejectionregion ^A ⁰¹¹ ¹ ⁰³ afancregion Usually defined via test statistic Tex EIR We say reject forlargeTC if x 0 Tex cc 1 Tex ^C yep ⁱ TX ^c if randomized for criticalthreshold CER T chosen to discriminate well between Ho H

Significance Level and Power

Two types of errors
\n1) Type I error : H_o true but we reject
\na) Type II error : H_o false but we don't rei:
\n
$$
13. Type II error : Ho false but we don't rei:\n $14. Type II error$;
\n $14. Type II power$;
\n $14. Type II power$
$$

Z + est

Linked Ratio Test
Simple vs simple: $H_0: X \sim P_0$ vs $H_1: X \sim P_1$
Densities $\rho_{0,1} \rho_1$ with dominating measure M (e.g. 6+f)
Optimal test rejects for large values of
Likelihood ratio test (LRT):
Likelihood ratio test (LRT):
$\phi(X) = \begin{cases} 1 & LR(x) = \rho_1(x)/\rho_0(x) \\ 0 & LR(x) < C \end{cases}$ \n
$\phi(X) = \begin{cases} 1 & LR(x) > c \\ 0 & LR(x) < c \end{cases}$ \n
C, γ chosen to make $\mathbb{F}_p \oint(X) = \alpha$
Further in the image of \mathbb{F}_p and \mathbb{F}_p
Super under H_1 : $\max \int_R \rho_1(x) dR(x)$ is a $\int_R \rho_2(x) dR(x)$
Span of fixed α budget on χ values
What deliver greatest bang/buck

Neyman-Pearson

Theorem (Neyman-Pearson Lemma) LRT with significance level a is optimal for testing $H_{0}: X \sim \rho_{0}$ us. $H_{1}: X \sim \rho_{1}$ Proof We are interested in maximization problem ${}_{\rho:\chi\rightarrow[\rho,1]}^{\text{ne}\times\text{inize}}$ $E_{1}[\rho(x)]$ s.t. $E_{0}[\phi(x)] \leq \infty$ Lagrange form: Maximize $E\left\{\phi(x)\right\} - \lambda E_o[\phi(x)]$ = $\int \phi(x) (\rho_1(x) - \lambda \rho_0(x)) dm(x)$ $=\int \phi(x) \left(\frac{\rho_i(x)}{\rho_0(x)} - \lambda \right) dP_o(x)$ $\phi(x) = \begin{cases} 1 & \text{if } LR > \lambda \\ 0 & \text{if } LR < \lambda \\ \text{arbitrary} & \text{if } LR = \lambda \end{cases}$ S_{θ} lution(s): \Rightarrow ϕ^* maximizes Lagrangian for $\lambda = c$ Consider any other test $\widetilde{\phi}(x)$, $E_{0} \widetilde{\phi}(x) \leq x$ $c(x - E_0 \tilde{\phi})$ zO $E, \tilde{\phi} \in E, \tilde{\phi} - cE, \tilde{\phi} + c\alpha$ ∲* maxes Lagrangian \leq $\mathbb{E}_1 \phi^* + c \mathbb{E}_o \phi^* + c$ $c(\alpha - \mathbb{E}_{0} \phi^{\star}) \geq 0$ $4 E_1 \phi^*$

Ex	$X \sim$ Binon(a, \theta)	
Test	$H_0: \theta = .5$ as $H_1: \theta = .51$ at level $\alpha = 0.05$	
$\rho_\theta(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$		
$\Rightarrow \frac{\rho_{s_1}(x)}{\rho_{s_1}(x)} = \frac{s_1^x (1+\theta)^{n-x}}{s_1^x} \propto \sqrt{\frac{s_1^x}{1+\theta^2}} \propto \frac{1}{\theta}$		
Reject	For large LRCX)	\Leftrightarrow Rej. For large X
\Leftrightarrow test that X,		
Exercise	$\frac{1}{H_0}(X > c) < \alpha$ (since $2^n \nmid .05$)	
X discrete	$\frac{1}{H_0}(X > c) < \alpha$ (since $2^n \nmid .05$)	
Randomize to "for off" error budget		
$\frac{1}{\theta_1}(X = c_1)$ and $\frac{1}{\theta_1}(X = c_2)$ and $\frac{1}{\theta_1}(R_0) = \alpha$		
For positive test (sig. level α)		
On positive test (sig. level α)		
What about the string H ₀ : $\theta = 0.5$ vs $H_1: \theta = 0.508$?		
Some test	$\left(\frac{508}{140}\right)^x$ also π in X	

Generally most powerful tests

\nGeneral H₀, H₁ (simple or composite)

\nDet
$$
\mathcal{I}f
$$
 $\phi^*(x)$ is level- x and

\nfor any other level- x test ϕ we have

\n $\mathbb{E}_{\theta} \phi^* \geq \mathbb{E}_{\theta} \phi$ $\forall \theta \in (\theta)$,

\nHere, ϕ^* is uniformly most powerful (ump)

Let Assume
$$
P = {P_o : \Theta \in \mathbb{R} \setminus \text{ has densities } P_o
$$
.
\n $P \text{ has monotone likelihood ratios } (MLR) \text{ in } T(x)$
\nif $P_{\theta_1}(x)$ is non-decreasing function of $T(x)$,
\nwhere $P_{\theta_1}(x) = \Theta_a \left(\frac{c}{b} = \infty \text{ if } c>0, \frac{b}{b} \text{ undefined} \right)$

Ex. 1-param exponential tamily i *i* 3 ... ر X $P_2(x) = e^{x + (x) - A(x)} h(x)$ $\frac{1}{2}$ $\chi(x)$ = $\exp (2i^2 7.7) \leq \frac{1}{2}$
 $\pi(x)$ $\overline{\mathcal{J}}$ in $T(X) = \Sigma T(x_i)$ \Rightarrow LRT rejects for large T if γ_1 γ_0 small T if $\gamma_1 \in \gamma_2$

Theorem Assume
$$
P
$$
 has MLR in TCX), and consider $+esting$ $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, for $\theta_0 \in \theta \leq R$.\n\nThe $p^* (X)$ rejects for large TCX .)\n\n ϕ^* is UMP at level $\alpha = \mathbb{E}_{\theta_0} \phi^*(X)$ \n\n $\frac{P_{\text{c}} \cdot f}{\cos t}$ \n\nConsider any other level α test ϕ , any $\theta_1 > \theta_0$, θ_0 is level α for $H_0: \theta = \theta_0$, as $H_1: \theta = \theta_1$, θ_0 (x) non-decr in TCX by assumption $\theta = \phi^*$ is LRT , $\beta_{\phi}(0) > \beta_{\phi}(0)$.\n\nNote: $\beta_{\phi}(0) > \alpha$ for $\theta_1 > \theta_0$ (compare to $\phi(X) = \alpha$).\n\nRemains to show $\beta_{\phi}(0) \leq \alpha$ for $\theta < \theta_0$.\n\nConsider testing: $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ for $\theta \leq \theta_0$.\n\nConsider testing: $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ for $\theta \leq \theta_0$.\n\nThe $\phi(X) = 1 - \phi^*(X)$ (reject for small π) is LRT at level $\theta_0 \neq K$) = $1 - \alpha$.\n\n \Rightarrow