Outline

1) Maximum Likelihood Estimator 2) Asymptotic Distribution of MLE ³ Consistency of MLE

Maximum Likelihood Estimation
For a generic dominated family $\mathcal{P} = \{P_{\theta}: \theta \in \Theta\}$
with densities ρ_{θ} , a simple estimate for Θ is
$\hat{\Theta}_{\text{HE}}(X) = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{HE}}(X) = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{HE}}(X) = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{E}}(X) = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{E}}(X) = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \frac{1}{\theta \epsilon \Theta} \theta$
$\hat{\Theta}_{\text{S}} = \$

 Ex $X_i \stackrel{\text{iid}}{\sim} e^{\gamma \tau(x) - A(\gamma)} h(x)$ $\gamma \in \Xi \subseteq \mathbb{R}$ $\hat{\gamma} = \dot{\psi}(\vec{\tau}), \quad \vec{\tau} = \frac{1}{n} \Sigma \tau(x_i)$ Assume $\gamma \in \mathbb{Z}^{\circ}$. $\dot{\gamma}(n) = \dot{A}(n) > 0 \quad \forall \gamma \in \mathbb{Z}^{\circ}$ so ψ^{-1} cts, (ψ^{-}) (m) = $\frac{1}{\psi(\psi(n))}$ = $\frac{1}{\mathcal{A}(\psi)}$ Consistency: $\overline{\tau} \stackrel{\rho_3}{\longrightarrow} M$ $Cts mapping: \quad \ddot{\psi}(\tau) \stackrel{\rho_1}{\longrightarrow} \dot{\psi}(m) = 2$ $\pi(\overline{T}-\mu) \implies N(\begin{array}{c} 0, \sqrt{c}r_n(T(x)) \end{array})$ Since $= N(0, \dot{A}(v))$ $(Recall J(n) = Var(T)^T$ Delta method: $=$ $\ddot{A}(y)^{-1}$) $\sqrt{n}(\hat{\eta}-\eta)=\sigma_n(\hat{\psi}(\tau)-\eta)$ $\Rightarrow N(0, \frac{1}{\hat{A}(t)}, \ddot{A}(t))$ = $N(0, \frac{1}{A(2)})$ Reall $J(\eta) = \sqrt{\sigma(\tau(\kappa_i))} = \tilde{A}(\eta)$ $=$ Fisher info from 1 obs $\hat{\eta} \approx \mathcal{N}(\gamma, \frac{1}{nJ(n)})$ Asymptotically unbiased, Gaussian, achieves CRLB $(cor(\mp, \frac{\lambda}{2}) \rightarrow 1)$

 E_X $X_1, ..., X_n \stackrel{iid}{\sim} R_{0is}(\theta)$, $\gamma = 6\sqrt{9}$ $\hat{\gamma}$ = $log \overline{X}$, $\overline{\pi}(\overline{X} - \theta) \Rightarrow N(0, \theta)$ $\overline{\ln}(\hat{\eta}-\eta) = \overline{\ln}(\log \overline{x}-\log \theta)$ $\Rightarrow N(0, \theta \cdot \frac{1}{\theta^{2}})$ (Delta method) = $N(0, \theta^{-1})$ B_{nt} \forall finite n, $\forall \theta > 0$: $\mathbb{P}_{\theta}(\hat{\gamma}=-\infty) = \mathbb{P}_{\theta}(X=0)$ $= e^{-\theta n} > 0$ $\Rightarrow E\hat{\eta} = -\infty \qquad \text{Var}(\hat{\eta}) = \infty$ MLE can have embarrassing finite-sample
performance despite being asy. optimal! Prop: If $P(B_n) \rightarrow O$, $X_n \Rightarrow X$, Z_n erbitrary then $X_n 1_{B_n^c} + Z_n 1_{B_n} \Rightarrow X$ $P_{\text{co}} f \quad P(|z_1 z_{\text{B}}| > \epsilon) \le P(|z_1|) \to 0 \quad \text{so} \quad z_1 z_{\text{B}} \to 0$ Also $1_{B_n^c}$ 1_{2} apply Slutsky $\mathbb R$ So zany behavior has no effect on cug. in dist]

Asymplotic	Efficiency	
The	size	behaviour of MLE we found
in the exponential family case genetics		
35	3	
15	4	
26	3	
37	5	
4	6	
5	6	
6	5	
7	6	
8	5	
10	6	
11	6	
12	6	
13	6	
14	6	
15	6	
16	6	
17	6	
18	6	
19	7	
10	8	
11	10	
12	10	
13	10	
14	10	
15	10	

\nWe say an estimator
$$
\hat{\theta}
$$
, is $\frac{25}{3}$ method for all decimal places

\n10

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n17

\n18

\n19

\

Answer 1: 1.1

\nUnder mild conditions,
$$
\hat{\theta}_{MLE}
$$
 is any. Gaussian, efficient

\nWe will be interested in $l(\theta; X)$ as a function of θ

\nNotate "true" value as θ_{o} (X-P_o)

\nDerivatives of l_{n} at θ_{o} : $(\theta_{o} \in \Theta^{o})$

\n $\nabla l_{1}(\theta_{o}; X_{i}) \ncong (0, \pi_{1}(\theta_{i}))$

\n $\frac{1}{\pi} \nabla l_{n}(\theta_{i}; X) = \pi_{n} \cdot \frac{1}{\pi} \nabla l_{n}(\theta_{i}; X_{i}) \Rightarrow N(\theta_{o}, \pi_{i}(\theta_{a}))$

\n $\frac{1}{\pi} \nabla l_{n}(\theta_{i}; X) = \pi_{n} \cdot \frac{1}{\pi} \nabla l_{n}(\theta_{i}; X_{i}) \Rightarrow N(\theta_{o}, \pi_{i}(\theta_{a}))$

\n $\frac{1}{\pi} \nabla l_{n}(\theta_{i}; X) \xrightarrow{\beta_{o}} \nabla l_{n}(\theta_{o}; X_{i}) = -\nabla_{1}(\theta_{o})$

\n $\frac{\Gamma_{0o} f}{\Gamma_{0}} \nightharpoonup \frac{f}{\Gamma_{0}} \nightharpoonup \frac{f}{\Gamma$

 $\overline{\mathcal{L}}$

Consistency of MLE $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \rho_{\theta_n}$, $\hat{\Theta}_n \in \text{argmax}_{\theta \in \Theta} \mathcal{L}_n(\theta; X)$ $\begin{bmatrix}$ Will be ok if $\hat{\Theta}_n$ comes close to maximizing ℓ_n Question: When does $\hat{\theta}_n \stackrel{P}{\rightarrow} \theta_0$? Assume model identifiable $(B_{\theta} \neq B_{\theta_{0}} \text{ for } \theta \neq \theta_{0})$

Recall KL Divergence: $D_{KL}(\theta_o \parallel \theta) = \mathbb{E}_{\theta_o} \log \frac{\rho_{\theta_o}(X_i)}{\rho_{\theta}(X_i)}$ $-D_{KL}(\theta_{0} \parallel \theta) \leq 1$ log $\mathbb{E}_{\theta_{0}}$ $\frac{\rho_{\theta}(x_i)}{\rho_{\theta_{0}}(x_i)} \leq 1$ (note switch) = $log \int_{x: \rho_{0}^{(x)} > 0} \frac{\rho_{0}(x)}{\rho_{0}(x)} \rho_{0}(x) d\mu(x)$ \leq $log 1 = 0$ (Jensen) unless $\frac{\rho_{\theta}}{\rho_{\theta_{o}}}$ const. (i.e., unless $P_{\theta} = P_{\theta_{o}}$) strict ineq Let $W_i(\theta) = \int_{i} (\theta; X_i) - \int_{i} (\theta_{0}; X_i)$, $W_n = \frac{1}{n} \sum W_i$ Note $\hat{\Theta}_n$ e arguax $\overline{W}_n(\Theta)$ too

$$
\overline{W}_{n}(\theta) \xrightarrow{\rho} \mathbb{F}_{\theta_{0}} W_{i}(\theta)
$$
\n
$$
= -D_{k_{L}}(\theta_{0} \parallel \theta)
$$
\n
$$
\leq O_{\rho} \exp(i\theta_{0} \parallel \theta) \in \Theta_{0}
$$

$$
\frac{But}{dt} = \frac{1}{2} \text{ and } B = 0
$$

\n
$$
\frac{But}{dt} = \frac{B}{2} = \frac{Jepends}{dt} \text{ or } B = \frac{Iv}{2} = \frac{B}{2}
$$

\n
$$
B = \frac{1}{2} \times 11 = 6 \times 11 = 50 \text{ N} \times 11 = 50
$$

Thm (LLN for random functions) Assume K compact, $W_1, W_2, ... \in C(K)$ iid. $E||w_i||_{\infty} < \infty$, $u(t) = E|w_i(t)|$ $u(t) \in C(K)$ Then and $P(\|\frac{1}{n}\epsilon w_i - m\|_{\infty} > \epsilon) \rightarrow 0$ $\begin{pmatrix} i.e., & \overline{w}, & \stackrel{P}{\longrightarrow} & \mu & in & \|\cdot\|_{\infty} & , & \text{or} & \|\overline{w}, -\mu\|_{\infty} \end{pmatrix}$

Theorem (Keener 9.4):
\nLet
$$
G_1, G_2, \ldots
$$
 random functions in $C(k)$, K_{cpt} .
\n
$$
||G_n - g||_{\infty} \xrightarrow{P} O, \quad \text{some fixed } g \in C(k)
$$
. Then
\n
$$
U \perp f + f_n \xrightarrow{f} f^* \in K \quad (f^* \text{ fixed}) \text{ then } G_n(t_n) \xrightarrow{f} g(t^*)
$$
\n
$$
\bigodot \perp f \qquad g \text{ maximized} \text{ at unique value } t^*,
$$
\nand $G_n(t_n) = \max_{(f_n, f_n) \in S_n} (t)$ then $f_n \xrightarrow{f} f^*$
\n $G_n(t_n) \ge \max_{(f_n, f_n) \in S_n} (t_n^*)$ (mods of proof in $P^*P^{|e|}$)
\n $G \perp f \qquad K \in \mathbb{R}$, $g(f) = 0$ has unique sol. t^* ,
\nand f_n solve $G_n(t_n) = 0$ then $f_n \xrightarrow{e_n} f^*$

Note we need 0 for $\tilde{\Theta}_n$ from MUT in Taylor expansion for consistency

$$
\frac{P_{\text{loop}}f}{\theta} |f_{\text{on}}(t_n) - g(t^*)| \leq |f_{\text{on}}(t_n) - g(t_n)| + |g(t_n) - g(t^*)|
$$
\n
$$
\leq ||f_{\text{on}} - g||_{\infty} + |g(t_n) - g(t^*)|
$$
\n
$$
\frac{P_{\text{loop}}}{\theta} \frac{\theta}{\theta} \frac{\theta}{\theta}
$$

Theorem (Consistency of MLE for compact G)	
$X_1, ..., X_n$ $\stackrel{ind}{\sim} P_{\theta}$, $\stackrel{d}{\sim} S_{hs}$ $\stackrel{d}{\sim} S_{hs}$ $\stackrel{d}{\sim} S_{hs}$ (a) $\stackrel{d}{\sim} S_{hs}$	
Assume	$\begin{array}{r}\n \theta & c1s & \text{in } G \\ \hline\n \end{array}$
$\begin{array}{r}\n \text{Using } V_i(\theta) < \infty \\ \text{Find the identity of } S_{\text{max}} \end{array}$	
$\begin{array}{r}\n \text{Find the identity of } S_{\text{max}} \end{array}$	
$\begin{array}{r}\n \text{Find the identity of } S_{\text{max}} \end{array}$	
$\begin{array}{r}\n \text{Then } \hat{\Theta}_n \stackrel{d}{\rightarrow} \Theta_o \text{ if } \hat{\Theta}_n \in \text{argmax } \mathcal{U}_n(\Theta; X) \\ \text{If } \hat{\Theta}_n \in \text{argmax } \mathcal{U}_n(\Theta; X) \text{ then } \mathcal{U}(\Theta) = -D_{\text{KL}}(\Theta_o \parallel \Theta) \\ \text{If } \Theta_o > 0, \quad \mathcal{U}(\Theta) < O \text{ if } \Theta \neq \Theta_o \text{ if } \Theta_o = \text{argmin } \mathcal{U} \text{ then } \mathcal{U}(\Theta_o) = 0 \\ \text{By definition, } \hat{\Theta}_n \text{ maximizes } \overline{W}_n, \\ \text{If } \overline{W}_n - \mathcal{U} \parallel_{\Theta} \stackrel{d}{\rightarrow} O \text{ then } \mathcal{U}(\Theta_o) = \text{argmin } \mathcal{U}(\Theta_o) = 0\n \end{array}$	

Thm (xkeener 9.11, but stronger conditions) X_1, \ldots, X_k f^d f_{θ_o} , \mathcal{F} has cts densities f_{θ_o} , $\theta \in \bigoplus_{i \in \mathbb{R}} q$ Assume Model identifiable F For all compact $K \subseteq \mathbb{R}^d$, $E\left[\sup_{\theta \in K} |W_i(\theta)|\right] < \infty$ \cdot } \circ 0 \cdot \cdot \cdot \cdot $\mathbb{E} \left[\lim_{n \to 0} f(x) \right]$ $<$ 0 Then $\hat{\theta}_n \stackrel{\rho}{\rightarrow} \theta_o$ if $\hat{\theta}_n \in \mathbb{C}$ arguer $\ell_n(\theta; X)$ $\frac{\rho_{\text{co}}f}{\rho_{\text{tot}}}$ Let $K = \{ \theta : ||\theta - \theta_{\text{o}}|| \leq r \}$, $\beta = \frac{F}{\theta \cdot 4K}$ $W_i(\theta) < 0$ $\sup_{\theta \notin K} \overline{w}_n(\theta) \leq \frac{1}{n} \sum_{i=1}^{n} \sup_{\theta \notin K} w_i(\theta) \stackrel{P}{\rightarrow} \beta < 0$ Hence, $\mathbb{P}(\theta, \psi) \leq \mathbb{P}(\overline{w}_{n}(\theta_{0}) \leq \frac{1}{\theta} \psi_{n}(\theta)) \to 0$ $\frac{\rho}{\rho_0}$ $\frac{\rho}{\rho_s}$ Let $\hat{\Theta}_{n}^{k} = \sup_{\Theta \in K} \overline{W}_{n}(\Theta) \stackrel{P}{\rightarrow} \Theta_{0}$ by prev. theorem (K compact) $\hat{\Theta}_{n} = \hat{\Theta}_{n}^{k} 1\{\hat{\Theta}_{n} \in k\} + \hat{\Theta}_{n} 1\{\hat{\Theta}_{n} \notin k\}$ $\stackrel{\rho}{\rightarrow} \theta_{o}$ since $\stackrel{\rho}{P}(\hat{\theta}_{n} \notin k) \rightarrow 0$

Theorem	
$X_1, ..., X_n$ $\overset{\text{ind}}{\sim} P_{\theta_n}$ $f_{\text{or}} \theta_n \in \Theta^n \subseteq \mathbb{R}^d$	
Assume	$\Theta_n \in \Theta_{\theta \oplus \theta_n}^{\text{max}} \mathbb{I}_n(\theta; X)$, $\overset{\text{def}}{\Theta_n} \xrightarrow{\text{def}} \Theta_n$
\cdot In a neighborhood	$\overline{B}_2(\theta) = \{ \theta : \text{Re } \Theta \cup \text{Re } \theta \} \subseteq \Theta^n$;
(i) $\oint_{\cdot} (\theta; X)$ has 2 c [†] s deciv, s on $\overline{B}_2(\theta_n)$, $\forall x$	
(ii) If θ_0 $\begin{bmatrix} \sup_{\theta \in \overline{B}_\xi} \mathbb{I} \{ \nabla^2 f_{\cdot}(\theta; X_i) \} \end{bmatrix} \subseteq \infty$	
\cdot Fisher into	
$\mathbb{E}_{\theta_0} \{ \mathbb{I}(\theta_0; X_i) = \Theta_{\text{or}} \{ \text{def } \theta_n \} \subseteq \mathbb{I}_n \}$	
$\mathbb{E}_{\theta_0} \{ \mathbb{I}(\theta_0; X_i) = \Theta_{\text{or}} \{ \text{def } \theta_n \} \subseteq \mathbb{I}_n \}$	
$\mathbb{E}_{\theta_0} \{ \mathbb{I}(\theta_0; X_i) = \Theta_{\text{or}} \{ \text{def } \theta_n \} \subseteq \mathbb{I}_n \}$	
$\mathbb{E}_{\theta_0} \{ \mathbb{I}(\theta_0; X_i) = \Theta_{\text{or}} \{ \text{def } \theta_n \} \subseteq \mathbb{I}_n \}$	
$\mathbb{E}_{\theta_0} \{ \mathbb{I}(\theta_0; X_i) = \Theta_{\text$	

Then $J_{\lambda}(\hat{\theta}_{1}-\theta_{0}) \implies N_{\lambda}^{(0)}, J_{1}(\theta)^{-1})$

Proof	Sup	$ \frac{1}{2} \nabla \ell(\theta) - J(\theta) ^2$	since	\overline{B}_{ϵ} $\omega_{\text{max}} \rightarrow \sigma$
Let	$A_{\Lambda} = \{ \hat{\theta}_{\Lambda} - \theta_{\Lambda} > \epsilon \}$	where		
$0_{\Lambda} A_{\Lambda} = \{ \hat{\theta}_{\Lambda} - \theta_{\Lambda} > \epsilon \}$				
$0_{\Lambda} A_{\Lambda} = \frac{\sigma}{2} \epsilon_{\Lambda} (\theta_{\Lambda} \rightarrow 0) = \frac{\sigma}{2$				