Outline

 Nonparametric Estimation Plugin estimator Bootstrap standard errors Bootstrap bias estimator correction Bootstrap confidence intervals Double bootstrap

Nonparametric Estimation

Setting Nonparameteric iid sample
\n
$$
X_{1},...,X_{n} \stackrel{iid}{\sim} P
$$
, P unknown
\nWhat to do inference on some 'perimeter'' $\Theta(P)$
\n $\cong X \rightarrow \Theta(P) = median(P) \quad (X \in \mathbb{R})$
\n $\Theta(P) = \lambda_{max} (Var_{P}(x_{i})) \quad (X \in \mathbb{R}^{d})$
\n $\Theta(P) = argmin_{P \in \mathbb{R}^{d}} \mathbb{E}_{P} [(Y_{i} - \Theta^{k})^{2}]$
\n $\Rightarrow \Theta(P) = argmin_{P \in \mathbb{R}^{d}} \mathbb{E}_{P} [(Y_{i} - \Theta^{k})^{2}]$
\n $\Rightarrow \Theta(P) = argmin_{P \in \mathbb{R}^{d}} D_{KL}(P \parallel P_{P})$ (best-fifting model even
\n $\cong argmax_{P} \mathbb{E}_{P}[f_{i}(\Theta; X_{i})] = \sum_{P \in \mathbb{R}^{d}} \mathbb{E}_{P}[f_{i}(\Theta; X_{i})] = \sum_{P \in \mathbb{R}^{d}} \mathbb{E}_{P}[f_{i}(\Theta; X_{i})]$

Recall the empirical dist of X₁, ..., X_n is
\n
$$
\hat{P}_{n} = \frac{1}{n} \sum \delta_{x_{i}} \qquad (\hat{P}_{n}(A) = \frac{\#\{i : X_{i} \in A\}}{n})
$$
\nThe plus-in estimate of B(P) is $\hat{G} = \Theta(\hat{P}_{n})$
\na) Sample median
\nb) λ_{max} (sample var)
\nc) obs estimate
\n1) MLE for $\{\hat{P}_{\theta} : \theta \in \Theta\}$

Does
$$
p|u_3 - h
$$
 estimator $w \circ c \le 7$. $\Rightarrow p \circ c$ and $\Rightarrow p \circ c$ is a nonnegative

\n
$$
\begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix}
$$
\nAnother example, $\begin{pmatrix} 2 & 6 \\ 2 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ 7 & 8 \end{pmatrix}$

\nAnother example, $\begin{pmatrix} 2 & 6 \\$

Suppose
$$
\hat{\Theta}_{n}(X)
$$
 is an estimator for $\Theta(P)$

\n(Manybe plus, maybe, maybe, and)

\nWhat is its standard error? Use, plus, in which the sequence $\hat{S}_{n}(A) = \sqrt{\text{Var}_{\hat{\theta}_{n}}(\hat{\theta}_{n}^{*})}$ [use $\hat{\theta}_{n}^{*}$ to include X^{*} not X]

\nVar $\hat{\theta}_{n}(\hat{\theta}_{n}^{*}) = \sqrt{\text{Var}_{\hat{\theta}_{n}(\hat{\theta}_{n}^{*})}$ [use $\hat{\theta}_{n}^{*}$ to include X^{*} not X]

\nVar $\hat{\theta}_{n}(\hat{\theta}_{n}^{*}) = \sqrt{\text{Var}_{X_{n-1}^{*}X_{n}^{*}} \otimes \text{Var}_{\theta}(\hat{\Theta}_{n}(X_{n-1}^{*},X_{n}^{*}))}$

\nHow, to compute? Monte Carlo:

\nFor $b = 1, ..., B$:

\n $\begin{bmatrix} S_{n-p}(k, n, \rho_{n}) & \text{with } j \in \mathbb{Z} \\ \hat{\theta}_{n}^{*} & \text{with } j \in \mathbb{Z} \end{bmatrix}$

\nSince $\hat{\theta}_{n}^{*}(X_{n}^{*}, X_{n}^{*})$

\n $\begin{bmatrix} S_{n-p}(k, n, \rho_{n}) & \text{with } j \in \mathbb{Z} \\ \hat{\theta}_{n}^{*} & \text{with } j \in \mathbb{Z} \end{bmatrix}$

\nSince $\hat{\theta}_{n}^{*}(X_{n}^{*}, X_{n}^{*})$

\n $\begin{bmatrix} S_{n}^{*} & \text{with } j \in \mathbb{Z} \\ \hat{\theta}_{n}^{*} & \text{with } j \in \mathbb{Z} \end{bmatrix}$

\nNote, this is a Mark Crole numerical appears to the value of $\hat{\theta}_{n}^{*}$ with the identical Booststrop, estimate, which we could compute by identifying over all n^{*} possible $X^{*} = (X_{n}^{*}, X_{n}^{*})$ works.

Bootstrap Bias Correction $\hat{\theta}_n$ some estimator. What is its bias? Bias $P^{(\ddot{\theta}_{n})=} \quad \mathbb{F}_{P} \bigcup \Theta_{n} - \Theta(P)$ I dea: plug in \hat{P}_{n} for P : Bias $\hat{P}_n(\hat{\theta}_n^{\star}) = \mathbb{H}_{\hat{P}_n} [\theta_n^{\star} - \Theta(\hat{P}_n^{\star})]$ N IS Monte Carlo: For $b=1, ..., B$: Sample $X_1^{\star 0}$, $X_2^{\star 0}$ did P b X_{τ} $\frac{1}{2}$ $\sum \hat{\Theta}^{*6}$ $\sum_{b=1}$ $\widehat{\beta}_{ins}(\widehat{\theta}_n) = \overline{\theta}^* - \Theta(\widehat{P}_n)$ We can use this to correct bias: $\hat{\theta}_{n}^{BC} = \hat{\theta}_{n} - \hat{B}_{ins}(\hat{\theta}_{n})$ Note: while Θ_{n} - Bias (Θ_{n}) is always better than Θ_{n} $\hat{\Theta}_n - B$ ias $(\hat{\Theta}_n)$ may not be! Might be adding us.

Bootstrap Contidence Interval How do we get a CI for O(P)? Idea: What if we knew the distribution of $R(x,p) = \hat{\Theta}_n(x) - \Theta(p)^2$. Define cdf $G_{n,P}(r) = \mathbb{P}_p(\Theta(x) - \Theta(P) \le r)$ Lower $\frac{a}{2}$ quartile $r = G_{n,p}^{-1}(\frac{a}{2})$ $U_{\rho \rho e}$ " $\Gamma_{2} = G_{n,\rho}^{-1} (1 - \gamma_{2})$ $1-\alpha = \mathbb{P}_{p}(\mathbf{r}_{1} \leq \hat{\theta}_{n} - \theta \leq \mathbf{r}_{2})$ = $P_p(e \in [\hat{e}_1 - r_2, \hat{e}_1 - r_1])$ Usually we don't know $G_{n,P}$ -- so bootstrap! $G_{n,\rho_{n}}(r) = \mathbb{P}_{\hat{\rho}_{n}}(\hat{\theta}(x^{*}) - \theta(\hat{\rho}_{n}) \le r)$ $G_{n,\hat{P}_n(r)}$ is a function only of X (not of P) C_{nn} use $C_{n,\alpha} = \left[\hat{\theta}_{n} - \hat{r}_{1}, \hat{\theta}_{n} - \hat{r}_{1}\right]$ with $\hat{r}_1 = G_{n,\hat{p}_1}(\gamma_2)$, $\hat{r}_2 = G_{n,\hat{p}_2}(\gamma_1)$ n

Bootstrapat For 6 1 B XM Xn ^b dp Rib cx ^b OCR Return ecdf of Rib The quantity Rnc^X ^P Efx OCP is called ^a roof function of data dist used to make CIs Other examples T.io iiTl i i iI iIRnlx.P 0nCxYocp Want to choose Rn so its sampling dist Gnp changes slowly with ^P so Gn ^p Gn ^p Studentized root usually works better E than Q ^O then we get Cn Q EE En ^F no

Double Bookstrap
\n $\frac{D_{\text{ouble}} - B_{\text{noisy}} + \frac{1}{2} + \frac{1}{2$

$$
S_{+e\mu} 1 \quad \text{a log.}
$$
\n
$$
F_{-e\mu} = 1 \quad \text{e } \frac{1}{2} \sum_{n=1}^{n} A_{n} = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1
$$

$$
\hat{\gamma}(\alpha) = \frac{1}{A} \sum_{\alpha} \mathbb{1} \{ C_{n,\alpha}^{* \alpha} \ni \Theta(\hat{P}_{n}) \}
$$
\n
$$
\hat{\gamma} = \hat{\gamma}^{-1} (1 - \alpha)
$$