Stats 210A, Fall 2024 Homework 10

Due on: Friday, Nov. 15

Instructions: See the standing homework instructions on the course web page

Problem 1 (James-Stein estimator with regression-based shrinkage). Consider estimating $\theta \in \mathbb{R}^n$ in the model $Y \sim N_n(\theta, \sigma^2 I_n)$. In the standard James-Stein estimator, we shrink all the estimates toward zero, but it might make more sense to shrink them towards the average value \overline{Y} (as we explored in a previous problem) or towards some other value based on observed side information.

Suppose that we have side information about each parameter θ_i , represented by covariate vectors $x_1,\ldots,x_n\in$ \mathbb{R}^d . Assume the design matrix $X \in \mathbb{R}^{n \times d}$, whose *i*th row is x'_i , has full column rank. Suppose that we expect θ_i is not too far from $x_i' \beta$ for some $\beta \in \mathbb{R}^d$. But unlike the usual linear regression setup, we will not assume $\theta_i = x_i' \beta$ exactly, we just want to shrink our estimate toward $x_i' \beta$.

(a) Assume the error variance $\sigma^2 = 1$ is known. Find an estimator $\delta(Y)$ for θ that strictly dominates $\delta_0(Y) =$ Y whenever $n - d \geq 3$,

 $MSE(\theta; \delta) < MSE(\theta; \delta_0), \text{ for all } \theta \in \mathbb{R}^n,$

and for which $MSE(X\beta; \delta) = d + 2$, for any $\beta \in \mathbb{R}^d$.

In the special case of "intercept-only" regression ($d = 1$ and $x_i = 1$ for all i), your estimator should reduce to the version of the James-Stein estimator that shrinks toward \overline{Y} (but you do not have to show this).

Hint: The problem will become easier after an appropriate change of basis; think about how the estimator operates on different subspaces.

- (b) Continue to assume the error variance $\sigma^2 = 1$ is known. Suppose we are unsure of whether $\theta = X\beta$ exactly. Suggest an appropriate test of the hypothesis $H_0: \theta = X\beta$ vs $H_1: \theta \neq X\beta$, treating $\beta \in \mathbb{R}^d$ as an unknown nuisance parameter.
- (c) **Optional:** (Not graded, no extra points) Now suppose that the error variance $\sigma^2 > 0$ is unknown, but we have $r > 1$ replicates for each i; that is, we observe $Y_{i,k} \stackrel{\text{ind.}}{\sim} N(\theta_i, \sigma^2)$ for $i = 1, \ldots, n$ and $k = 1, \ldots, r$. Modify your test from the previous part for H_0 : $\theta = X\beta$ vs H_1 : $\theta \neq X\beta$.

Problem 2 (Confidence regions for regression). Assume we observe $x_1, \ldots, x_n \in \mathbb{R}$, which are not all identical (for at least one pair i and j, $x_i \neq x_j$). We also observe

$$
Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \text{ for } \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2).
$$

 $\beta_0, \beta_1 \in \mathbb{R}$ and $\sigma^2 > 0$ are unknown. Let \bar{x} represent the mean value $\frac{1}{n} \sum_i x_i$.

(a) Give an explicit expression for the t-based confidence interval for β_1 , in terms of a quantile of a Student's t distribution with an appropriate number of degrees of freedom (feel free to break up the expression, for example by first giving an expression for $\hat{\beta}_1$ and then using $\hat{\beta}_1$ in your final expression).

- (b) Define the OLS estimator $\hat{\beta} = \binom{\hat{\beta}_0}{\hat{\beta}_1}$. Show that $\hat{\beta} \sim N_2 (\beta, \sigma^2 (X'X)^{-1})$, for the design matrix $X =$ $[1_n, x]$. Apply this fact to find an F-test for the hypothesis $H_0: \ \beta = 0$ vs $H_1: \ \beta \neq 0$.
- (c) Invert your *F*-test to give a *confidence ellipse* for $\beta = \binom{\beta_0}{\beta_1}$. It may be convenient to represent the set as an affine transformation of the unit ball in \mathbb{R}^2 :

$$
b + A\mathbb{B}_1(0) = \{b + Az : z \in \mathbb{R}^2, ||z|| \le 1\},
$$
 for $b \in \mathbb{R}^2, A \in \mathbb{R}^{2 \times 2}$.

Give explicit expressions for b and A in terms of a quantile of an appropriate F distribution.

Problem 3 (Confidence bands for regression). The setup for this problem is the same as for the previous problem only now we are interested in giving *confidence bands* for the regression line $f(x) = \beta_0 + \beta_1 x$. In this problem you do not need to give explicit expressions for everything, but you should be explicit enough that someone could calculate the bands based on your description.

(a) For a fixed value $x_0 \in \mathbb{R}$ (not necessarily one of the observed x_i values) give a $1 - \alpha t$ -based confidence interval for $f(x_0) = \beta_0 + \beta_1 x_0$. That is, we want to find $C_1^P(x_0)$, $C_2^P(x_0)$ such that

$$
\mathbb{P}\left(C_1^P(x_0) \le f(x_0) \le C_2^P(x_0)\right) = 1 - \alpha.
$$

For each x_0 , the coverage should be exactly $1 - \alpha$. The functions $C_1^P(x)$, $C_2^P(x)$ that we get from performing this operation on all x values give a *pointwise confidence band* for the function $f(x)$.

(b) Now give a *simultaneous confidence band* around $f(x) = \beta_0 + \beta_1 x$. That is, give $C_1^S(x)$, $C_2^S(x)$ with

 $\mathbb{P}\left(C_1^S(x) \leq f(x) \leq C_2^S(x), \text{ for all } x \in \mathbb{R}\right) \geq 1 - \alpha,$

and show that your confidence band has this property.

Hint: If all we know is that β is in the confidence ellipse from the previous problem, what can we deduce about $f(x)$?

- (c) Download the data set in $\frac{\hbar v}{\hbar c}$ from the course web site and make a scatter plot of the data. Plot the OLS regression line as well as the two confidence bands. Describe what you see. What do the bands do as x goes away from the data set, and why does this make sense?
- (d) Optional: (Not graded, no extra points) Show that the coverage of the simultaneous confidence band is *exactly* $1 - \alpha$, not just greater than or equal to $1 - \alpha$.

Problem 4 (Precision-weighted average). Suppose that we observe two independent samples $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim}$ (μ, σ^2) and $Y_1, \ldots, Y_m \stackrel{\text{i.i.d.}}{\sim} (\mu, \tau^2)$, with $n, m > 1$. The notation means that the expectation of a single X_i or Y_i is $\mu \in \mathbb{R}$, and the variance is $\sigma^2 > 0$ for a single X_i and $\tau^2 > 0$ for a single Y_i . All three parameters are unknown, but we are primarily interested in estimating the common expectation μ .

A natural estimator is to take a convex combination of the sample averages:

$$
\delta_{\gamma}(X, Y) = \gamma \overline{X} + (1 - \gamma)\overline{Y},
$$

for $\gamma \in [0,1]$.

(a) Show that the optimal (variance-minimizing) choice of γ is

$$
\gamma^* = \frac{n\sigma^{-2}}{n\sigma^{-2} + m\tau^{-2}} = \frac{1}{1 + \rho m/n},
$$

where $\rho = \sigma^2/\tau^2$. δ_{γ^*} is called the *precision-weighted average* because $n\sigma^{-2}$ and $m\tau^{-2}$ are the precisions (inverse variances) of \overline{X} and \overline{Y} , respectively. Give the variance of $\delta_{\gamma^*}(X, Y)$.

(b) Since σ^2 and τ^2 are unknown, we must estimate them. Let S_X^2 and S_Y^2 denote the usual sample variances for the two samples. Show that $\hat{\rho} = S_X^2/S_Y^2$ is a consistent estimator for ρ as $m, n \to \infty$.

Hint: It may help to recall the identity $(n-1)S_X^2 = \sum_i X_i^2 - n\overline{X}^2$.

Note: If you are wondering what it means for both m and n to go to ∞ , you may assume that we have a sequence of problems indexed by $k = 1, 2, \dots$ and $\min\{m_k, n_k\} \to \infty$ as $k \to \infty$. You should feel free to work more informally than this.

(c) Let $\hat{\gamma} = 1/(1 + \hat{\rho}m/n)$ and assume that $m, n \to \infty$ with $m/n \to c \in (0, \infty)$. Show that the adaptive estimator

$$
\delta_{\hat{\gamma}}(X,Y) = \hat{\gamma}X + (1-\hat{\gamma})Y
$$

has an asymptotic normal distribution as $n, m \to \infty$, and give its asymptotic distribution after appropriately centering and scaling it. Compare the asymptotic distribution of the adaptive estimator $\delta_{\hat{\gamma}}(X, Y)$ to the asymptotic distribution of the oracle estimator $\delta_{\gamma^*}(X, Y)$.

Hint: Start by considering the asymptotic distribution of $(\overline{X}, \overline{Y})$. You may use without proof the result that if $Z_n \Rightarrow P$ and $W_n \Rightarrow Q$, and Z_n and W_n are independent for each n, then $(Z_n, W_n) \to P \times Q$ (meaning the product measure between the distributions P and Q).

Note: Again, if we want to set up a formal sequence of problems in which the distribution converges, we could assume the ratio $c_k = m_k/n_k$ is converging to $c \in (0, \infty)$, in addition to our previous assumption that $\min\{m_k, n_k\} \to \infty$. As before, you can also work more informally.

Problem 5 (Probabilistic big-O notation). Let X_1, X_2, \ldots denote a sequence of random vectors (with $||X_n|| <$ ∞ almost surely for each *n*). We say the sequence is *bounded in probability* (or sometimes *tight*) if for every $\varepsilon > 0$ there exists a constant $M_{\varepsilon} > 0$ for which

$$
\mathbb{P}(\|X_n\| > M_{\varepsilon}) < \varepsilon, \quad \forall n.
$$

Informally, there is "no mass escaping to infinity" as n grows. Like regular big-O notation, these symbols can help to make rigorous asymptotic proofs look clean and intuitive.

For a fixed sequence a_n , we say $X_n = o_p(a_n)$ if $X_n/a_n \stackrel{p}{\to} 0$ as $n \to \infty$, and $X_n = O_p(a_n)$ if the sequence $(X_n/a_n)_{n\geq 1}$ is bounded in probability.

Prove the following facts for $X_n, Y_n \in \mathbb{R}^d$:

- (a) If $X_n \Rightarrow X$ for any random vector X, then $X_n = O_p(1)$.
- (b) If $X_n = o_p(a_n)$ then $X_n = O_p(a_n)$.
- (c) If $X_n = O_p(a_n)$ and $Y_n = o_p(b_n)$, then $X'_n Y_n = o_p(a_n b_n)$. If $X_n = O_p(a_n)$ and $Y_n = O_p(b_n)$, then $X'_n Y_n = O_p(a_n b_n).$
- (d) If $X_n = O_p(1)$ and $g: \mathbb{R}^d \to \mathbb{R}^k$ is continuous then $g(X_n) = O_p(1)$.
- (e) For $d = 1$, if $X_n = O_p(a_n)$ with $a_n \to 0$ and $g : \mathbb{R} \to \mathbb{R}$ is continuously differentiable with $g(0) =$ $\dot{g}(0) = 0$, then $g(X_n) = o_p(a_n)$. Show further that if g is twice continuously differentiable then $g(X_n)$ $O_p(a_n^2)$. (**Hint:** Use the mean value theorem and apply a previous part of this problem.)
- (f) For $d = 1$, if $Var(X_n) = a_n^2 < \infty$ and $EX_n = 0$ then $X_n = O_p(a_n)$. (**Hint:** Use Chebyshev's inequality.)
- (g) If Var $(X_n) = a_n^2 < \infty$, is it impossible to have $X_n = o_p(a_n)$? Prove or give a counterexample.