
Stats 210A, Fall 2024
Homework 10

Due on: Friday, Nov. 15

Instructions: See the standing homework instructions on the course web page

Problem 1 (James-Stein estimator with regression-based shrinkage). Consider estimating θ ∈ Rn in the model
Y ∼ Nn(θ, σ2In). In the standard James-Stein estimator, we shrink all the estimates toward zero, but it might
make more sense to shrink them towards the average value Y (as we explored in a previous problem) or towards
some other value based on observed side information.

Suppose that we have side information about each parameter θi, represented by covariate vectors x1, . . . , xn ∈
Rd. Assume the design matrix X ∈ Rn×d, whose ith row is x′i, has full column rank. Suppose that we expect
θi is not too far from x′iβ for some β ∈ Rd. But unlike the usual linear regression setup, we will not assume
θi = x′iβ exactly, we just want to shrink our estimate toward x′iβ.

(a) Assume the error variance σ2 = 1 is known. Find an estimator δ(Y ) for θ that strictly dominates δ0(Y ) =
Y whenever n− d ≥ 3,

MSE(θ; δ) < MSE(θ; δ0), for all θ ∈ Rn,

and for which MSE(Xβ; δ) = d+ 2, for any β ∈ Rd.

In the special case of “intercept-only” regression (d = 1 and xi = 1 for all i), your estimator should reduce
to the version of the James-Stein estimator that shrinks toward Y (but you do not have to show this).

Hint: The problem will become easier after an appropriate change of basis; think about how the estimator
operates on different subspaces.

(b) Continue to assume the error variance σ2 = 1 is known. Suppose we are unsure of whether θ = Xβ
exactly. Suggest an appropriate test of the hypothesis H0 : θ = Xβ vs H1 : θ 6= Xβ, treating β ∈ Rd as
an unknown nuisance parameter.

(c) Optional: (Not graded, no extra points) Now suppose that the error variance σ2 > 0 is unknown, but we
have r > 1 replicates for each i; that is, we observe Yi,k

ind.∼ N(θi, σ
2) for i = 1, . . . , n and k = 1, . . . , r.

Modify your test from the previous part for H0 : θ = Xβ vs H1 : θ 6= Xβ.

Problem 2 (Confidence regions for regression). Assume we observe x1, . . . , xn ∈ R, which are not all identi-
cal (for at least one pair i and j, xi 6= xj). We also observe

Yi = β0 + β1xi + εi, for εi
i.i.d.∼ N(0, σ2).

β0, β1 ∈ R and σ2 > 0 are unknown. Let x̄ represent the mean value 1
n

∑
i xi.

(a) Give an explicit expression for the t-based confidence interval for β1, in terms of a quantile of a Student’s
t distribution with an appropriate number of degrees of freedom (feel free to break up the expression, for
example by first giving an expression for β̂1 and then using β̂1 in your final expression).
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(b) Define the OLS estimator β̂ =
(β̂0

β̂1

)
. Show that β̂ ∼ N2

(
β, σ2(X ′X)−1

)
, for the design matrix X =

[1n, x]. Apply this fact to find an F -test for the hypothesis H0 : β = 0 vs H1 : β 6= 0.

(c) Invert your F -test to give a confidence ellipse for β =
(
β0

β1

)
. It may be convenient to represent the set as an

affine transformation of the unit ball in R2:

b+AB1(0) = {b+Az : z ∈ R2, ‖z‖ ≤ 1}, for b ∈ R2, A ∈ R2×2.

Give explicit expressions for b and A in terms of a quantile of an appropriate F distribution.

Problem 3 (Confidence bands for regression). The setup for this problem is the same as for the previous
problem only now we are interested in giving confidence bands for the regression line f(x) = β0 + β1x. In
this problem you do not need to give explicit expressions for everything, but you should be explicit enough that
someone could calculate the bands based on your description.

(a) For a fixed value x0 ∈ R (not necessarily one of the observed xi values) give a 1 − α t-based confidence
interval for f(x0) = β0 + β1x0. That is, we want to find CP1 (x0), CP2 (x0) such that

P
(
CP1 (x0) ≤ f(x0) ≤ CP2 (x0)

)
= 1− α.

For each x0, the coverage should be exactly 1 − α. The functions CP1 (x), CP2 (x) that we get from per-
forming this operation on all x values give a pointwise confidence band for the function f(x).

(b) Now give a simultaneous confidence band around f(x) = β0 + β1x. That is, give CS1 (x), CS2 (x) with

P
(
CS1 (x) ≤ f(x) ≤ CS2 (x), for all x ∈ R

)
≥ 1− α,

and show that your confidence band has this property.

Hint: If all we know is that β is in the confidence ellipse from the previous problem, what can we deduce
about f(x)?

(c) Download the data set in hw10.csv from the course web site and make a scatter plot of the data. Plot the
OLS regression line as well as the two confidence bands. Describe what you see. What do the bands do as
x goes away from the data set, and why does this make sense?

(d) Optional: (Not graded, no extra points) Show that the coverage of the simultaneous confidence band is
exactly 1− α, not just greater than or equal to 1− α.

Problem 4 (Precision-weighted average). Suppose that we observe two independent samples X1, . . . , Xn
i.i.d.∼

(µ, σ2) and Y1, . . . , Ym
i.i.d.∼ (µ, τ2), with n,m > 1. The notation means that the expectation of a single Xi or

Yi is µ ∈ R, and the variance is σ2 > 0 for a single Xi and τ2 > 0 for a single Yi. All three parameters are
unknown, but we are primarily interested in estimating the common expectation µ.

A natural estimator is to take a convex combination of the sample averages:

δγ(X,Y ) = γX + (1− γ)Y ,

for γ ∈ [0, 1].

(a) Show that the optimal (variance-minimizing) choice of γ is

γ∗ =
nσ−2

nσ−2 +mτ−2
=

1

1 + ρm/n
,

where ρ = σ2/τ2. δγ∗ is called the precision-weighted average because nσ−2 andmτ−2 are the precisions
(inverse variances) of X and Y , respectively. Give the variance of δγ∗(X,Y ).
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(b) Since σ2 and τ2 are unknown, we must estimate them. Let S2
X and S2

Y denote the usual sample variances
for the two samples. Show that ρ̂ = S2

X/S
2
Y is a consistent estimator for ρ as m,n→∞.

Hint: It may help to recall the identity (n− 1)S2
X =

∑
iX

2
i − nX

2
.

Note: If you are wondering what it means for both m and n to go to∞, you may assume that we have a
sequence of problems indexed by k = 1, 2, . . . and min{mk, nk} → ∞ as k → ∞. You should feel free
to work more informally than this.

(c) Let γ̂ = 1/(1 + ρ̂m/n) and assume that m,n → ∞ with m/n → c ∈ (0,∞). Show that the adaptive
estimator

δγ̂(X,Y ) = γ̂X + (1− γ̂)Y

has an asymptotic normal distribution as n,m→∞, and give its asymptotic distribution after appropriately
centering and scaling it. Compare the asymptotic distribution of the adaptive estimator δγ̂(X,Y ) to the
asymptotic distribution of the oracle estimator δγ∗(X,Y ).

Hint: Start by considering the asymptotic distribution of (X,Y ). You may use without proof the result
that if Zn ⇒ P and Wn ⇒ Q, and Zn and Wn are independent for each n, then (Zn,Wn) → P × Q
(meaning the product measure between the distributions P and Q).

Note: Again, if we want to set up a formal sequence of problems in which the distribution converges, we
could assume the ratio ck = mk/nk is converging to c ∈ (0,∞), in addition to our previous assumption
that min{mk, nk} → ∞. As before, you can also work more informally.

Problem 5 (Probabilistic big-O notation). LetX1, X2, . . . denote a sequence of random vectors (with ‖Xn‖ <
∞ almost surely for each n). We say the sequence is bounded in probability (or sometimes tight) if for every
ε > 0 there exists a constant Mε > 0 for which

P(‖Xn‖ > Mε) < ε, ∀n.

Informally, there is “no mass escaping to infinity” as n grows. Like regular big-O notation, these symbols
can help to make rigorous asymptotic proofs look clean and intuitive.

For a fixed sequence an, we say Xn = op(an) if Xn/an
p→ 0 as n → ∞, and Xn = Op(an) if the

sequence (Xn/an)n≥1 is bounded in probability.
Prove the following facts for Xn, Yn ∈ Rd:

(a) If Xn ⇒ X for any random vector X , then Xn = Op(1).

(b) If Xn = op(an) then Xn = Op(an).

(c) If Xn = Op(an) and Yn = op(bn), then X ′nYn = op(anbn). If Xn = Op(an) and Yn = Op(bn), then
X ′nYn = Op(anbn).

(d) If Xn = Op(1) and g : Rd → Rk is continuous then g(Xn) = Op(1).

(e) For d = 1, if Xn = Op(an) with an → 0 and g : R → R is continuously differentiable with g(0) =
ġ(0) = 0, then g(Xn) = op(an). Show further that if g is twice continuously differentiable then g(Xn) =
Op(a

2
n). (Hint: Use the mean value theorem and apply a previous part of this problem.)

(f) For d = 1, if Var(Xn) = a2n <∞ and EXn = 0 then Xn = Op(an). (Hint: Use Chebyshev’s inequality.)

(g) If Var(Xn) = a2n <∞, is it impossible to have Xn = op(an)? Prove or give a counterexample.
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