
Stats 210A, Fall 2024
Homework 10

Due on: Friday, Nov. 22

Instructions: See the standing homework instructions on the course web page

Problem 1 (Some Maximum Likelihood Estimators). Find the MLE for each model below, and find its asymp-
totic distribution. You do not need to check the conditions for convergence theorems; just calculate assuming
they are in force.

(a) Laplace: X1, . . . , Xn
i.i.d.∼ 1

2e
−|x−θ|.

Note: although the log-likelihood is non-differentiable at one point, we can still use the Fisher information
as defined by J1(θ) = Varθ[ ˙̀

1(θ;Xi)] to get the asymptotic distribution; you may assume this without
proof. You may assume n is odd.

(b) Binomial: X1, . . . , Xn
i.i.d.∼ Binom(m, θ). Find the MLE for θ and for the canonical parameter η =

log θ
1−θ .

(c) Gaussian: X1, . . . , Xn
i.i.d.∼ N(θ, σ2). Find (i) the MLE for θ if σ2 is known, (ii) the MLE for σ2 if θ is

known, and (iii) the MLE for (θ, σ2) if neither is known.

Problem 2 (Limiting distribution of U -statistics). Suppose X1, . . . , Xn
i.i.d.∼ P in some sample space X . Un =

Un(X1, . . . , Xn) is called a rank-2 U -statistic if

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

h(Xi, Xj)

where h is a symmetric function, i.e. h(x1, x2) = h(x2, x1) for any x1, x2 ∈ X .
In this problem, we denote θ = Eh(X1, X2) and assume that Eh(X1, X2)2 < ∞. Note that Un is the

nonparametric UMVU estimator of θ.
Perhaps surprisingly, we can derive the asymptotic distribution of Un in a relatively small number of steps

using a technique called Hájek projection where we approximate it by an additive function of the independent
Xi variables. We walk through the proof below.

(a) Define g(x) = Eh(x,X2)− θ =
∫
h(x, u) dP (u)− θ. Show that, for all i,

Eg(Xi) = 0, and Var(g(Xi)) <∞.

(Note: g is a specific function from X to R. It is not a rule for naively substituting symbols into expres-
sions. In particular, note that g(Xi), a random variable, is not the same as the deterministic expression
Eh(Xi, X2)− θ.)

(b) Define Ûn = θ+ 2
n

∑n
i=1 g(Xi). Show that E[(Un−Ûn)f(Xi)] = 0 for any i and any measurable function

f(Xi) with E[f(Xi)
2] <∞.

(Hint: Condition on Xi)
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(c) Show that
√
n(Un − Ûn)

p→ 0 as n→∞. (Hint: show that Un and Ûn have the same asymptotic variance,
and then apply part (b)).

(d) Conclude that
√
n(Un − θ)⇒ N(0, 4ζ1), where ζ1 = Var(g(X1)).

(e) Assume that X = R with EX4
i <∞. Express the sample variance S2

n = 1
n−1

∑n
i=1(Xi−X)2 as a rank-2

U-statistic and use the above results to derive its asymptotic distribution.

(Note: a similar result holds in general for rank-r U -statistics if we set Ûn = θ + r
n

∑
i g(Xi) where

g(x) = E[h(x,X2, . . . , Xr)]− θ. )
Moral: If Pn is the distribution of (X1, . . . , Xn) then it is easy to check that the set of all square-integrable

random variables of the form f(X1, . . . , Xn) (where f : Xn → R is measurable) forms a vector space over
R, which we call L2(Pn), where we can define an inner product as

〈f(X), g(X)〉L2 = E[f(X)g(X)] ≤
√

E[f(X)2]E[g(X)2] <∞.

Moreover, the subset of those random variables that can be written as
∑
i fi(Xi), where each fi is measur-

able, forms a subspace. Part (b) establishes that the simpler random variable Ûn is the projection of Un onto
this subspace, and part (c) establishes that Un is asymptotically very close to its projection.

Problem 3 (Score test with nuisance parameters). Consider a testing problem with X1, . . . , Xn
i.i.d.∼ pθ,ζ(x)

with parameter of interest θ ∈ R and nuisance parameter ζ ∈ R. That is, we are testing H0 : θ = θ0 vs.
H1 : θ 6= θ0, and ζ is unknown; let ζ0 denote its true value. Then there is a version of the score test where we
plug in an estimator for ζ, but we must use a corrected version of the variance.

Let ζ̂0 denote the maximum likelihood estimator of ζ under the null:

ζ̂0(θ0) = arg max
ζ∈R

`(θ0, ζ;X).

Assume ζ̂0 is consistent under the null hypothesis.
Let J(θ, ζ) denote the full-sample Fisher Information (omitting the usual n subscript), and assume it is

continuous and positive-definite everywhere.

(a) Use Taylor expansions informally to show that, for large n,

∂

∂θ
`(θ0, ζ̂0) ≈ ∂

∂θ
`(θ0, ζ0)−

∂2

∂θ∂ζ `(θ0, ζ0)

∂2

∂ζ2 `(θ0, ζ0)

∂

∂ζ
`(θ0, ζ0).

(Note: the LHS should be read as [ ∂∂θ `(θ, ζ)]
∣∣
θ0,ζ̂0

, and not d
dθ0

[`(θ0, ζ̂0(θ0))]).

(b) Using part (a), conclude that(
J11 −

J2
12

J22

)−1/2
∂

∂θ
`(θ0, ζ̂0)⇒ N(0, 1) as n→∞

where J = J(θ0, ζ̂0). Compare this to the score test statistic we would use if ζ0 were known rather than
estimated. (Note: you may assume without proof that the approximation error in part (a) is negligible; i.e.
you may take the “≈” as an exact equality).

Moral: The score test can be carried out with nuisance parameters, but the fact that we estimate the nuisance
parameter affects the distribution of the test statistic in a way that we need to take into account.

2



Problem 4 (Poisson score test). Suppose that for i = 1, . . . , xn we observe a real covariate xi ∈ R (fixed and
known) and a Poisson response Yi ∼ Pois(λi). We assume that λi = α+ βxi, with the restriction that λi ≥ 0
for all i, but with α, β ∈ R otherwise unrestricted. Assume that

lim
n→∞

∑n
i=1 |xi − x̄n|3

(
∑n
i=1(xi − x̄n)2)

3/2
= 0,

where x̄n = n−1
∑n
i=1 xi. We observe the first n pairs (xi, yi) and our goal is to test the hypothesis H0 : β =

0 vs. H1 : β > 0. Assume that there are at least 3 distinct values represented among x1, . . . , xn.

(a) Show that this model is a curved exponential family.

(b) Derive the score test statistic for H0 vs H1. Give the test statistic and asymptotic rejection cutoff.

(c) Show that your test statistic is indeed asymptotically normally distributed, and find an asymptotically valid
rejection cutoff.

Hint: It may help to use the Lyapunov CLT, which applies to sums of independent random variables that
are not necessarily identically distributed: Suppose Z1, Z2, . . . is a sequence of random variables with
Zi ∼ (µi, σ

2
i ), for σ2

i <∞. Define s2n =
∑n
i=1 σ

2
i . If for some δ > 0, we have

lim
n→∞

1

s2+δn

n∑
i=1

E
[
|Zi − µi|2+δ

]
= 0,

then s−1n
∑n
i=1(Zi − µi)⇒ N(0, 1).

Hint: It may also help to start by assuming x̄ = 0, and then generalize your result.

(d) Suppose n is small, so we don’t want to rely on the asymptotic normality. Explain how we could find a
finite-sample exact conditional cutoff for the score test from part (b) (it is not necessary to give a closed
form for the test, or to prove any optimality property).

Problem 5 (Super-Efficient Estimator). Let X1, . . . , Xn
i.i.d.∼ N(θ, 1) and consider estimating θ via:

δn(X) = Xn1{|Xn| > an},

where an → 0 but an
√
n→∞ as n→∞ (for example, an = n−1/4).

(a) Show that δn has the same asymptotic distribution as Xn when θ 6= 0, but that
√
n(δn − 0)

p→ 0 if θ = 0.

(b) Show that, pointwise in θ, as n→∞,

nMSE(δn; θ)→ 1{θ 6= 0},

but that the convergence is not uniform in θ; in fact,

sup
θ∈R

nMSE(δn; θ)→∞.

(Note: this is an example of a situation where it is incorrect to exchange a limit with a supremum.)

Moral: The sense in which asymptotically efficient estimators are “optimal” is not easy to define, and it
isn’t obvious how we should compare the asymptotic behavior of different estimators. In this example it would
appear initially that the super-efficient estimator renders the sample mean inadmissible. But this is only true
if we look at the pointwise limit for fixed θ; at any n there are some values of θ for which the estimator is
performing very badly, and this gets worse and worse as n gets larger.
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