
Stats 210A, Fall 2024
Homework 4

Due on: Wednesday, Oct. 2

Instructions: You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-
sure equality vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the problem is
explicitly asking about such issues).

Problem 1 (Unbiased estimation in replicated studies). One focal issue in the ongoing scientific replication
crisis is the “file drawer problem,” i.e. the tendency of researchers to report findings (or of journals to publish
them) only if they have a p-value less than 0.05. Replication studies typically represent cleaner estimates of the
results under study, since they are reported regardless of whether they are statistically significant. This is one
of the reasons that replication studies often find much smaller effect size estimates than the original studies: if
the original study had gotten a good estimate of the (small) true effect, we wouldn’t have heard about it.

We can introduce a toy model for a replicated study where the original study is X1 ∼ N(µ, 1) and the
replication study is X2 ∼ N(µ, 1), but we only observe the study pair given that X1 > c for some significance
cutoff c ∈ R, e.g. c = 1.96. In other words, the distribution for a study pair conditional on our observing it is

pµ(x1, x2) = Pµ(X1 = x1, X2 = x2 | X1 > c)

=
φ(x1 − µ)1{x1 > c}

1− Φ(c− µ)
φ(x2 − µ),

where φ(x) = 1√
2π
e−x

2/2 is the standard normal pdf and Φ(x) =
∫ x
−∞ φ(u) du is the standard normal cdf. We

will consider the problem of estimating µ after observing a study pair.
Arguably, we should only care about the conditional bias or risk of an estimator, given that we actually get

to see the data, since the conditional distribution more accurately describes the set of published results. Thus,
all questions below about bias, admissibility, UMVU, etc. should be answered in terms of the conditional
distribution given that X1 > c (i.e., with densities pµ(x1, x2) above), not in terms of the marginal distribution
(whose densities would be φ(x1 − µ)φ(x2 − µ).) For example, in part (a) it would not be true to say that X is
marginally biased, but I want you to show it is conditionally biased given that it is observed.

(a) Show that X = (X1 + X2)/2 is an upwardly biased estimator of µ (we can call this the naive estimator
since it ignores the selection bias).

(b) Show that X2 is unbiased for µ, but it is inadmissible under any strictly convex loss function (we can call
this the data splitting estimator since we ignore X1, which was used for selection, and use the fresh data
X2.)

(c) Show that the UMVU estimator for µ is

δ(X) = X − 1√
2
ζ
(√

2(c−X)
)
,

where

ζ(x) = EZ∼N(0,1)[Z | Z > x] =

∫∞
x
uφ(u) du

1− Φ(x)
.
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Hint: It may help to note that X1 + X2 is marginally independent of X1 − X2 (but note they are not
conditionally independent given X1 > c.)

(d) Show that
lim
X→∞

δ(X)−X = 0.

In other words, if X � c, then δ(X) ≈ X , the naive estimator. Can you give any intuition for why this
limit makes sense?

(e) Optional: (Not graded, no extra points) Show that

lim
X→−∞

δ(X)− (X2 + (X1 − c)) = 0,

and furthermore that for any ε > 0, we have

lim
X→−∞

P(X1 − c > ε | X,X1 > c)→ 0.

In other words, if X � c, we have δ(X) ≈ X2 + (X1 − c) ≈ X2, the data splitting estimator. Can you
give any intuition for why this limit makes sense?

Hint: It may be helpful to use the tail inequality(
1

x
− 1

x3

)
φ(x) ≤ 1− Φ(x) ≤ 1

x
φ(x),

for x > 0.

Moral: This is a nice estimator that transitions adaptively between the data splitting estimator (when X1 is
subject to extreme selection bias) and the unadjusted sample mean (when X1 is nearly unaffected by selection
bias). It manages to do this even though we don’t know how bad the selection bias is, since that depends on
µ. It would be difficult to come up with an estimator like this without the theory of exponential families and
UMVU estimators, specifically the idea of Rao-Blackwellization. You can read more about problems like this
in Hung and Fithian (2020).

Problem 2 (Poisson UMVU and Bayes estimation). Let X1, . . . , Xn
i.i.d.∼ Pois(θ) and consider estimating

g(θ) = e−θ = Pθ(X1 = 0)

(a) Find the UMVU estimator for g(θ) by Rao-Blackwellizing a simple unbiased estimator. You may use
without proof the fact that (X1, . . . , Xn) ∼ Multinom(t, (n−1, . . . , n−1)) given

∑n
i=1Xi = t.

(b) Find the UMVU estimator for g(θ) directly, using the power series method from class.

(c) Consider Bayes estimation using the Gamma prior

θ ∼ Gamma(ν, s) =
1

Γ(ν)sν
θν−1e−θ/s,

where ν is the shape parameter and s is the scale parameter. Find the posterior distribution for θ, and the
Bayes estimator for g(θ) under the squared error loss.

Hint: The MGF might be useful.

Problem 3 (Bayesian law of large numbers). Let p(x) and q(x) denote two strictly positive probability densities
with respect to a common dominating measure µ. The Kullback–Leibler divergence between p and q is defined
as

D(p‖q) =

∫
X
p(x) log

p(x)

q(x)
dµ(x).
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(a) Show that D(p‖q) ≥ 0, with equality only in the case that p(X) = q(X) almost surely

Hint: recall that log(1 + x) ≤ x for all x > −1.

(b) Consider a dominated likelihood model P = {pθ(x) : θ ∈ Θ}, where the parameter space Θ is a finite
set, and the densities are strictly positive on X . Let λ denote a prior density w.r.t. the counting measure on
Θ, and consider the Bayes posterior after observing a sample X1, . . . , Xn

i.i.d.∼ pθ0(x) for some fixed value
θ0 (that is, we are doing a frequentist analysis of the Bayesian posterior distribution). Assume that all the
densities are distinct; that is, pθ1(X) = pθ2(X) almost surely if and only if θ1 = θ2.

If the prior λ puts positive mass on all values in Θ, show that as n → ∞, the posterior density eventually
concentrates nearly all its mass on the true value θ0. That is,

Pθ0 [λ(θ0 | X1, . . . , Xn) ≥ 1− ε]→ 1, for all ε > 0.

Hint: apply the law of large numbers and see if you can find a way to use part (a).

Moral: At least for a finite parameter space, the Bayes estimator always converges to the right answer as
long as we put positive mass on the right answer. This result can be generalized with more effort to continuous
parameter spaces under some regularity conditions on the likelihood function, similar to the types of conditions
we will use to guarantee the MLE is consistent.

The requirement that the prior density should be nonzero everywhere is sometimes called Cromwell’s Rule,
after Oliver Cromwell’s famous plea to the Church of Scotland: “I beseech you, in the bowels of Christ, think
it possible that you may be mistaken.”

Problem 4 (Fisher information for location and scale families). This problem considers the Fisher information
for families with location or scale structure. Your verbal explanations for each part will be graded leniently.

(a) Consider a location family
pθ(x) = p0(x− θ), for θ ∈ R,

where p0 is some fixed probability density function with respect to the Lebesgue measure.

Show that the Fisher information for a single observation X is given by

J(θ) =

∫ ∞
−∞

ṗ0(u)2

p0(u)
du.

Explain in your own words why it makes sense that there should be no dependence on θ.

(b) Consider a scale family

pθ(x) =
1

θ
p0

(x
θ

)
, θ > 0.

where p0 is some fixed probability density function with respect to the Lebesgue measure.

Show that the Fisher information of a single observation X is given by

J(θ) =
1

θ2

∫ ∞
−∞

[
uṗ0(u)

p0(u)
+ 1

]2
p0(u) du.

Try to explain in your own words why it makes sense that the Fisher information should be proportional to
θ−2.

(c) If we instead parameterize the scale family using ζ = log θ, show that the Fisher information J(ζ) of a
single observation X does not depend on ζ. Explain in your own words why this makes sense.

Problem 5 (Other loss functions). Assume for each problem below that there exists an estimator with finite
Bayes risk.
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(a) Consider a Bayesian model with a discrete parameter θ. What is the Bayes estimator for the loss L(θ, d) =
1{θ 6= d}?

(b) Next consider a Bayesian model with a single real parameter θ, and assume that the posterior distribution
of θ given X = x is absolutely continuous (with respect to the Lebesgue measure) for all x. What is the
Bayes estimator for the absolute error loss L(θ, d) = |θ − d|?

(c) Under the same assumptions as part (b), what loss function Lγ(θ, d) would give the posterior γ quantile as
its Bayes estimator; that is, the estimator δγ(X) has P(θ < δγ(X) | X) = γ.
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