
Stats 210A, Fall 2024
Homework 6

Due on: Wednesday, Oct. 16

Instructions: See the standing homework instructions on the course web page

Problem 1 (Effective degrees of freedom). We can write a standard Gaussian sequence model in the form

Yi = µi + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n

with µ ∈ Rn and σ2 > 0 possibly unknown. If we estimate µ by some estimator µ̂(Y ), we can compute the
residual sum of squares (RSS):

RSS(µ̂, Y ) = ‖µ̂(Y )− Y ‖2 =

n∑
i=1

(µ̂i(Y )− Yi)2.

If we were to observe the same signal with independent noise Y ∗ = µ+ε∗, the expected prediction error (EPE)
is defined as

EPE(µ, µ̂) = Eµ
[
‖µ̂(Y )− Y ∗‖2

]
= Eµ

[
‖µ̂(Y )− µ‖2

]
+ nσ2.

Because µ̂ is typically chosen to make RSS small for the observed data Y (i.e., to fit Y well), the RSS is
usually an optimistic estimator of the EPE, especially if µ̂ tends to overfit. To quantify how much µ̂ overfits,
we can define the effective degrees of freedom (or simply the degrees of freedom) of µ̂ as

DF(µ, µ̂) =
1

2σ2
E [EPE− RSS] ,

which uses optimism as a proxy for overfitting.
For the following questions assume we also have a predictor matrix X ∈ Rn×d, which is simply a matrix

of fixed real numbers. Suppose that d ≤ n and X has full column rank.

(a) Show that if µ̂ is differentiable with Eµ‖Dµ̂(Y )‖F <∞ then

n∑
i=1

∂µ̂i(Y )

∂Yi

is an unbiased estimator of the DF. (Recall Dµ̂(Y ) is the Jacobian matrix from class).

(b) Suppose µ̂ = Xβ̂, where β̂ is the ordinary least squares estimator (i.e., chosen to minimize the RSS).
Show that the DF is d. (This confirms that DF generalizes the intuitive notion of degrees of freedom as
“the number of free variables”).

(c) Suppose µ̂ = Xβ̂, where β̂ minimizes the penalized least squares criterion:

β̂ = argmin
β
‖Y −Xβ‖22 + ρ‖β‖22,

for some ρ ≥ 0. Show that the DF is
∑d
j=1

λj

ρ+λj
, where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues of X ′X

(counted with multiplicity) (Hint: use the singular value decomposition of X).
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Moral: When we do estimation with no shrinkage or other regularization, there is a real sense in which just
counting the number of free parameters we estimate gives us a useful picture of how hard our estimator has
fit (or overfit) to the data. For estimators that do a lot of regularization, however, naive parameter counting is
not a good measure of overfitting. In this context, the effective degrees of freedom as defined above is a more
natural generalization of the parameter dimension.

Problem 2 (Soft thresholding). Consider the soft thresholding operator with parameter λ ≥ 0, defined as

ηλ(x) =


x− λ x > λ

0 |x| ≤ λ
x+ λ x < −λ

Note that, although we didn’t prove it in class, Stein’s lemma applies for continuous functions h(x) which are
differentiable except on a measure zero set; you can apply it here without worrying.

Assume X ∼ Nd(θ, Id) for θ ∈ Rd, which we will estimate via δλ(X) = (ηλ(X1), . . . , ηλ(Xd)). Soft
thresholding is sometimes used when we expect sparsity: a small number of relatively large θi values. λ here is
called a tuning parameter since it determines what version of the estimator we use, but doesn’t have an obvious
statistical interpretation.

(a) Show that |{i : |Xi| > λ}| is an unbiased estimator of the degrees of freedom of δλ (so, in a sense, the DF
is the expected number of “free variables”).

(b) Show that
d+

∑
i

min(X2
i , λ

2)− 2 |{i : |Xi| ≤ λ}|

is an unbiased estimator for the MSE of δλ.

(c) Show that, if some θi 6= 0, the risk-minimizing value λ∗ solves

λ
∑
i

Pθi(|Xi| > λ) =
∑
i

φ(λ− θi) + φ(λ+ θi),

where φ(z) = e−z2/2
√
2π

is the standard normal density.

Hint: To show that there is a minimum in (0,∞), it may help to recall the Gaussian tail bound(
1

z
− 1

z3

)
φ(z) ≤ P(Z > z) ≤ 1

z
φ(z),

for Z ∼ N(0, 1). It might also help to show that φ(λ−θ2)φ(λ−θ1) → 0 as λ→∞, if θ1 > θ2.

(d) Consider a problem with θ1 = · · · = θ20 = 10 and θ21 = · · · = θ500 = 0. Compute λ∗ numerically. Then
simulate a vector X from the model and use it to automatically tune the value of λ by minimizing SURE.
Call the automatically tuned value λ̂(X) and report both λ∗ and λ̂(X). Finally plot the true MSE of δλ
along with its SURE estimate against λ for a reasonable range of λ values. Add a horizontal line for the
risk of the UMVU estimator.

(e) Compute and report the squared error loss ‖δ(X)− θ‖2 for the following four estimators:

(i) the UMVU estimator δ0(X) = X ,
(ii) the optimally tuned soft-thresholding estimator δλ∗(X),

(iii) the automatically tuned soft-thresholding estimator δλ̂(X)(X), and
(iv) the James-Stein estimator.

You do not need to compute the MSE. Intuitively, what do you think accounts for the good performance of
soft-thresholding in this example?
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Moral: SURE gives us a reasonable way of selecting a tuning parameter for estimation problems, and can
help us choose a tuning parameter that achieves the near optimal performance. Also, regularization methods
that set a lot of parameters to zero can substantially reduce the MSE in sparse problems, by eliminating all the
variance for most of the coordinates.

Problem 3 (Shrinking toward the average). Assume we observe data from a Gaussian sequence model X ∼
Nd(θ, Id) with d ≥ 4, and we want to estimate θ ∈ Rd with low mean-squared error loss. Instead of shrinking
toward zero, however, we want to shrink towardX . This implements an inductive bias that the θi values should
be close to each other, as opposed to assuming they should be close to zero.

We can use the estimator whose ith coordinate is

δgamma,i(X) = γX + (1− γ)Xi = X + (1− γ)(Xi −X),

leading to
δγ(X) = X1d + (1− γ)(X −X1d),

where 1d = (1, 1, . . . , 1) ∈ Rd. The course reader calculated the SURE for this model when we have a fixed
γ.

We will instead consider a popular version of the James–Stein estimator, which uses an adaptive choice

γ̂(X) =
d− 3

‖X −X1d‖2
=

d− 3∑
i(Xi −X)2

,

leading to

δJS2
(X) = X1d +

(
1− d− 3

‖X −X1d‖2

)
(X −X1d)

(a) As with the previous James–Stein estimator, we can motivate this estimator in a similar way by empirical
Bayes in a model with θi

i.i.d.∼ N(µ, τ2). If we want we can write ζ = (1+ τ2)−1 as before. Show that δJS2

is the empirical Bayes estimator for this prior, where we estimate the hyperparameters (µ, ζ) by UMVU.

(b) Derive an unbiased estimator for the risk MSE(θ; δJS2
). Your estimator should be a function of the data X ,

and should not involve any unknown parameters like µ, ζ, or θ.

(c) Find an expression for the MSE of δJS2
as a function of θ, and show that it dominates the MSE of δ0(X) =

X for all θ ∈ Rd. Evaluate your expression in the case where θ1 = θ2 = · · · = θd.

(d) Optional: (Not graded, no extra points) If we make a change of variables to a certain Z = f(X) with
Z ∼ Nd(µ, Id), then δJS2 could be characterized as estimating µ1 as Z1 (without any shrinkage), and
estimating µ−1 = (µ2, . . . , µd) via the original James–Stein estimator on the (d − 1)-variate normal
Z−1 ∼ Nd−1(µ−1, Id−1). Find such a transformation f and use this construction to repeat part (c).

Problem 4 (Tweedie’s formula). Besides James–Stein, another well-known empirical Bayes method is Tweedie’s
formula for doing Bayes estimation of natural parameters in exponential family models.

Assume that the data come from a common 1-parameter exponential family with a different parameter for
each observation:

Xi
ind.∼ pηi(x) = eηix−A(η)h(x),

Additionally, assume ηi
i.i.d.∼ λ(η) where λ is an unknown density on R (so this is a non-parametric model

for the prior). Define the marginal

q(x) =

∫
pη(x)λ0(η),

(a) Show that the posterior distribution λ(ηi | xi) follows a one-parameter exponential family model with
sufficient statistic ηi and normalizing constant B(xi) = log(q(xi)/h(xi)).

(b) Use part (a) to find the Bayes posterior mean of ηi given Xi.
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Moral: There are a variety of methods (beyond the scope of this course) to obtain nonparametric density
estimators for the marginal density q(x) when we observe X1, . . . , Xn

i.i.d.∼ q. This problem shows that such an
estimator leads directly to nonparametric empirical Bayes estimators for ηi.
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