
Stats 210A, Fall 2024
Homework 7

Due on: Wednesday, Oct. 23

Instructions: See the standing homework instructions on the course web page

Problem 1 (Upper-bounding θ). (a) Let X ∼ N(θ, 1) for θ ∈ R, and consider the loss function

L(θ, d) = 1{d < θ};

that is, we observe X and try to come up with an upper bound δ(x) ∈ R for θ. Show that the minimax risk
is 0 (note you may not be able to find a minimax estimator).

(b) Now, consider a problem with the same loss function but without observing any data. Show the minimax
risk (considering both randomized and non-randomized estimators) is 1, but the Bayes risk rΛ = 0 for any
prior Λ (note there may be no estimator δΛ that attains the minimum Bayes risk).

(Note: This problem exhibits a “duality gap” where the lower bounds we can get by trying different priors
will always fall short of the minimax risk.)

(c) Optional (not graded, no extra points): Now consider the same loss function, but now X ∼ N(θ, σ2) and
σ2 is unknown too. Find the minimax risk.

Hint: consider estimators of the form δ(X) = c|X|.

Problem 2 (MLR and location families). (a) Assume X ∼ pθ(x) = p0(x − θ), a location family with p0

continuous and strictly positive. Show that the family has MLR in x if and only if log p0 is concave.

Note: For full credit, you should not assume that p0 is differentiable.

Hint 1: It may help to recall that f(x) is convex if and only if

R(x1, x2) =
f(x1)− f(x2)

x1 − x2

is non-decreasing in x1 and x2.

Hint 2: It may also help to recall that a continuous function f is convex if and only if it is midpoint convex
meaning

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
, for all x1, x2.

(b) Consider testing in the Cauchy location family:

pθ(x) =
1

π(1 + (x− θ)2)
.

Let θ0, θ1 be any two real numbers with θ1 > θ0 and consider the LRT for testing H0 : θ = θ0 vs
H1 : θ = θ1 at some level α ∈ (0, 1). Show that for some α∗(θ0, θ1), the rejection region for any α < α∗

is a bounded interval, and the rejection region for any α > α∗ is a union of two half intervals. Find α∗.

Hint: recall that d
dx arctan(x) = 1

1+x2 .
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(c) In the Cauchy location family, prove that, for any α ∈ (0, 1), there exists no UMP level-α test of H0 : θ =
0 vs. H1 : θ > 0.

(d) Consider testing H0 : θ = 0 vs. H1 : θ = 6 in the Cauchy location family at level α = 0.01. Numerically
calculate the rejection region and the power for the LRT, and also for the one-tailed test that rejects for
large values of X .

(e) Optional: (not graded, no extra points) In words, can you explain why the optimal LRT rejection re-
gions for the Cauchy distribution take this odd form? Think about how you would explain to a scientific
collaborator why you are proposing such an odd test, beyond “it fell out of an optimization problem.”
Moral: When we think carefully about how to design rejection regions, we can get surprising results. In

particular, for location families with heavy tails, extreme values are not that informative for distinguishing
between two smaller values of the location parameter. Concretely, X = 106 doesn’t help us distinguish
between θ1 = 1 vs. θ0 = 0. By contrast, if the tails are lighter (log p0 concave implies the density shrinks at
least exponentially) then more extreme X values always give stronger evidence for distinguishing between any
two parameter values; this is what MLR means.

Problem 3 (Some UMP tests). Numerically find the UMP test for the following hypothesis testing problems
at level α = 0.05. For each problem,

(i) derive the appropriate test on paper,

(ii) numerically compute the cutoff value c (and γ if necessary), and

(iii) plot the power function of the level-α test for an appropriate range of parameter values.

(a) Xi
ind.∼ Pois(aiλ) for i = 1, . . . , n, where a1, . . . , an are known positive constants and λ > 0 is unknown.

Test H0 : λ = 1 vs. H1 : λ > 1, with n = 5 and ai = i.

(b) Xi
ind.∼ N(θ, σ2

i ) for i = 1, . . . , n, where σ2
i are known positive constants and θ ∈ R is unknown. Test

H0 : θ = 0 vs. H1 : θ > 0, with n = 20 and σ2
i = i. On your power plot, also plot the power function of

the (sub-optimal) test that rejects for large
∑
iXi.

(c) X1, . . . , Xn
i.i.d.∼ Pareto(θ) = θx−(1+θ), for θ > 0 and x > 1 (also called a power law distribution). Test

H0 : θ = 1 vs. H1 : θ < 1, for n = 100. On your power plot, also plot the power function of the
(sub-optimal) test that rejects for large

∑
iXi.

Moral: Once again, when we use the right test we often can deliver noticeably better power than if we
chose an ad hoc test.

Problem 4 (Uniform UMP test). We usually can’t get a UMP two-sided test, but this problem gives an amus-
ing counterexample where it is possible, for our old friend the German tank problem. Let X1, . . . , Xn

i.i.d.∼
Unif[0, θ] for θ > 0.

(a) Consider the problem of testing H0 : θ = θ0 versus H1 : θ > θ0. Show that any test φ for which φ(x) = 1
when x(n) = max{x1, . . . , xn} > θ0 is UMP at level α = Eθ0 [φ(X)].

(b) Now consider the problem of testing H0 : θ = θ0 against H1 : θ 6= θ0. Show that a unique UMP level-α
test exists, and is given by

φ(x) = 1
{
x(n) > θ0 or x(n) < θ0α

1/n
}

Problem 5 (Bayesian hypothesis testing). Consider a univariate Gaussian problem with X | θ ∼ N(θ, 1),
where θ = 0 under the null hypothesis and θ ∼ Λ1 under the alternative hypothesis (assume Λ1({0}) = 0).
In addition let π0 denote the a priori probability that the null hypothesis is true; therefore the full prior is a
mixture between a point mass at 0 and Λ1.
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(a) Compute the posterior probability that the null hypothesis is true, i.e.

πpost(x; Λ1, π0) = P(θ = 0 | X = x).

(b) If π0 = 0.5 and X = x, how small could the posterior null probability be?

That is, find
π∗

post(x) = min
Λ1

πpost(x; Λ1, 0.5),

as a function of x, for x > 0. Give the minimizing prior Λ1, which also depends on x.

Note: This is not an optimization problem the analyst is going to solve. Any given analyst will use their
own actual prior to calculate their own posterior probability. We are just getting a lower bound on how
small the analyst’s posterior null probability could be.

(c) Now restrict Λ1 = N(0, τ2) for τ > 0, a subclass of “realistic” priors an analyst might use if they were
initially unsure about what alternative value to focus on. Compute πpost as a function of τ2 and x.

Continuing to assume the analyst puts 0.5 prior on the null and the alternative, now how small could the
analyst’s posterior probability be? That is, find

π∗
post,N (x) = min

τ2>0
πpost(x;N(0, τ2), 0.5),

and give the minimizing value of τ2, both as functions of x, for x > 1.

(d) Now assume we observe a value of X such that the two-sided p-value p(X) (i.e., p(x) = P0(|X| > |x|))
takes the values 0.05, 0.01, 0.005, or 0.001. Numerically compute π∗

post and π∗
post,N for each value and

make a small table. In words, interpret the results.

Moral: p-values are commonly misinterpreted as representing “the probability that the null hypothesis
is true, given the data.” This is an Bayesian statement and it depends on our prior beliefs. In fact, as this
problem shows, even in a Bayesian setting, the p-value is generally not a good approximation for the posterior
probability that the null is true.
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