
Stats 210A, Fall 2024
Homework 9

Due on: Friday, Nov. 8

Instructions: See the standing homework instructions on the course web page

Problem 1 (Fisher’s exact test). Suppose Xi ∼ Binom(ni, πi) independently for i = 0, 1 and π0, π1 ∈ (0, 1).
Consider testing H0 : π1 ≤ π0 vs. H1 : π1 > π0.

(a) A natural object of inference in this model is the odds ratio:

ρ =
π1/(1− π1)
π0/(1− π0)

.

Write the model in exponential family form with θ = log ρ as one of the natural parameters, and reframe
H0 as an equivalent hypothesis about θ.

(b) The hypergeometric distribution Hypergeom(N,K, n) describes the probability distribution for sampling
n binary values without replacement from a finite population of N binary values, of which K are equal to
1 and the other N − K are equal to 0. If X is the number of successes in the subsample, its probability
mass function is

pN,K,n(x) =

(
K
x

)(
N−K
n−x

)(
N
n

) , for x = max{0, n+K −N}, . . . ,min{K,n}.

Find the UMPU level-α test of H0 in part (a), show that the test statistic has a hypergeometric distribution
for appropriate N,K, n, and describe how to find the cutoffs c(u), γ(u).

(c) Find the conditional distribution of your test statistic for general θ. Note you do not need to find a closed-
form expression for the normalizing constant.

(d) Suppose n0 = n1 = 40, X0 = 18 and X1 = 7. Give a 95% confidence interval for the odds ratio ρ by
numerically inverting the two-sided, equal-tailed, conditional test of H0 : ρ = ρ0 vs. H1 : ρ 6= ρ0. Don’t
randomize the interval, just return the conservative non-randomized interval. (Hint: it is equivalent to set
up the problem in terms of θ, and may be a little easier to think about that way.)

Note: Fisher’s exact test is almost certainly the most important non-Gaussian example of a UMPU test with
nuisance parameters, and has been used in countless clinical trials and observational studies. For example, we
might give n1 cardiac disease patients a new drug and give n0 a placebo, then observe how many patients in
each group suffer a heart attack within the next 5 years.

Problem 2 (Comparing variances). Consider testing H0 : σ2 ≤ τ2 vs. H1 : σ2 > τ2 in the two-sample
Gaussian model with

X1, . . . , Xn
i.i.d.∼ N(µ, σ2), Y1, . . . , Ym

i.i.d.∼ N(ν, τ2),

where X is independent of Y and all parameters are unknown.
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Define the sample mean and sample variance as

X =
1

n

n∑
i=1

Xi, S2
X =

1

n− 1

n∑
i=1

(Xi −X)2,

and define Y and S2
Y analogously.

(a) Show that S2
X/S

2
Y ∼ Fn−1,m−1 if σ2 = τ2 (i.e., on the boundary of the null).

(b) Show that the test that rejects for (marginally) large values of S2
X/S

2
Y is UMPU (Hint: it may be helpful to

recall thatX,S2
X , Y , and S2

Y are mutually independent by Basu’s theorem, and that (n− 1)S2
X = ‖X‖2 − nX2

.)

Problem 3 (One-sample t-interval). If Z ∼ N(0, 1) and V ∼ χ2
d with Z, V independent, we say that T =

Z/
√
V/d follows a Student’s t distribution with d degrees of freedom, denoted by T ∼ td. Note that T 2 ∼ F1,d

but T preserves sign information in case we want to do one-sided tests.
Now suppose X1, . . . , Xn

i.i.d.∼ N(µ, σ2) with σ2 > 0 unknown and consider testing H0 : µ = µ0 vs.
H1 : µ 6= µ0.

We showed in class that the one-sided UMPU test for H0 : µ ≤ 0 vs. H1 : µ > 0 rejects for large values
of TX = X

√
n√

S2
X

, where S2
X is defined as in Problem 2.

(a) Show that TX ∼ tn−1 if µ = 0 (see hint for previous problem).

(b) To test H0 : µ = 0 vs. H1 : µ 6= 0, show that the UMPU test rejects for large values of |TX | (Hint: the
simplest way is to use symmetry).

(c) Find a UMPU test of H0 : µ = µ0 for a generic µ0 ∈ R, and invert to find a confidence interval for µ in
terms of X , S2

X , quantiles of the tn−1 distribution, and the desired level α (Hint: consider the distribution
of Xi − µ0).

Problem 4 (McNemar’s test). Suppose we have paired binary data: for i = 1, . . . , n we observe (Xi, Yi) ∈
{0, 1}2. The pairs are i.i.d. with

P [(Xi, Yi) = (a, b)] = πa,b a, b ∈ {0, 1}.

This model could describe the performance of two prediction models on a test set, where Xi and Yi represent
respectively whether each model gets the ith prediction right. Or it could represent binary outcomes in a
matched-pairs clinical trial, where similar patients are matched into pairs and then within each pair a coin is
flipped to see who gets the treatment and who gets the placebo.

Write πX = P(Xi = 1) = π1,0 + π1,1 and πY = P(Yi = 1) = π0,1 + π1,1, and let Na,b =
∑n

i=1 1{Xi =
a, Yi = b}.

(a) Find the UMPU test of H0 : πX ≤ πY vs. H1 : πX > πY , giving the cutoffs c(u), γ(u) in terms of
solutions to integral equalities for a binomial distribution. (Hint: it may help to first reframe the hypothesis
in terms of the πa,b parameters.)

(b) Suppose N0,0 = N1,1 = 1000, N0,1 = 5 and N1,0 = 25. Compute 95% confidence intervals for πX
and πY (invert the two-sided equal-tailed test but without randomizing). Then compute a p-value for
H0 : πX ≤ πY (do not randomize). Does anything about the respective answers surprise you?

(Note: This test is called McNemar’s test; it is very useful for clinical trials with matched pairs of subjects,
and also for comparing the performance of different classifiers on a held-out sample.)

Moral: When we have paired data, we can often make much more precise comparisons between two
distributions; even more precise than our ability to infer things about either of the distributions individually.
This is often worth taking into account if we are designing an experiment: for example, if we match patients
into pairs on demographic characteristics and then randomize a treatment/placebo assignment within each pair,
we may get a very good inference about whether the treatment is better than the placebo, much better than we
would get if we randomly assigned all 2n subjects independently of each other.
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Problem 5 (Nonparametric tests). In this problem you will design tests for two nonparametric hypothesis
testing problems. There is necessarily some wiggle room in how you choose the test statistic, and it will
probably not be possible to determine the cutoff explicitly. Just choose a reasonable one, define the cutoff in
terms of a quantile of a well-defined distribution, and show that your test has significance level α.

(a) Suppose X1, . . . , Xn ∈ R are independent random variables with Xi ∼ Pi. Consider testing the null
hypothesisH0 : P1 = P2 = · · · = Pn (i.e., the observations are i.i.d.) against the alternative that there is a
systematic trend toward larger values of Xi as i increases (this is sometimes called a test of trend). Design
a level-α test.

(b) Suppose (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P where P is an unknown joint distribution on R2. Consider testing

the null hypothesis that Xi and Yi are independent within each pair (i.e., P = PX × PY , with PX and PY

unknown and not necessarily the same) versus the alternative that (Xi, Yi) are positively correlated within
each pair. Design a level-α test.

Note that the alternative is defined a little vaguely in each part above. If that troubles you, we could
formally take the alternative be “Pi are arbitrary but not all equal” in part (a), or “P 6= PX × PY ” in part (b).
The alternative hypotheses as I’ve defined them informally are meant to suggest which alternatives to prioritize
when you design your test.

Moral: We can often design our own nonparametric tests by conditioning on an appropriate sufficient
statistic for the null distribution.
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