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Final Examination: QUESTION BOOKLET
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• Do NOT open this question booklet until you are told to do so.

• Write your Student ID number (NOT your name) at the top of this
page.

• Write your solutions in this booklet.

• No electronic devices are allowed during the exam.

• Be neat! If we can’t read it, we can’t grade it.

• You can treat any results from lecture or homework as “known,” and
use them in your work without rederiving them, but do make clear
what result you’re using. You do not need to explicitly check regularity
conditions for the theorems from class that required them.

• For a multi-part problem, you may treat the results of previous parts
as given (if you don’t prove the result for part (a), you can still use it
to solve part (b)).

• I have starred some parts which I believe are the most difficult, and
which I expect most students won’t necessarily be able to solve in
the time allotted. They are generally not worth more points than the
less difficult parts, so don’t waste too much time on them until you’re
happy with your answers to the latter.

• Be careful to justify your reasoning and answers. We are primarily
interested in your understanding of concepts, so show us what you
know.

• Good luck!
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1. Poisson minimax estimation (24 points, 4 points / part).

Some useful facts for this problem:

• For θ > 0, the Poisson density for X ∼ Pois(θ) is θxe−θ

x! on x = 0, 1, . . ..
The mean and variance are both θ.

• The Gamma density for X ∼ Gamma(k, β), where β > 0 is the rate
parameter, is

βk

Γ(k)
xk−1e−βx, on x > 0,

where Γ(k) =
∫∞
0 zk−1e−z dz. The mean and variance are k/β and

k/β2, respectively.

• If X ∼ Gamma(k, β) (in the rate parameterization) with k > 1, then
E[X−1] = β/(k − 1).

Consider estimating θ given a single Poisson observation X ∼ Pois(θ)
using the loss function

L(d, θ) =
(d− θ)2

θ
.

Throughout this problem, unless otherwise specified, the risk of a given
estimator is always calculated using this loss.

(a) Find the MLE and calculate its risk function.

(b) Show that θ ∼ Gamma(k, β) is a conjugate prior for this problem and
give the posterior distribution.

(c) Find the Bayes estimator for the prior from part (b) and the loss L
defined above.

(d) (*) Show that the Bayes risk of the Bayes estimator from part (c) is
1/(1 + β)

(e) Show that the MLE is minimax relative to the loss L.

(f) Show that the minimax risk for the usual squared error loss — i.e.,
LSE(d, θ) = (d − θ)2 — is infinite (this motivates changing the loss
function to our L, which “adjusts” for the hardness of the problem).

2



1. Solution.

(a) By inspection the Poisson density eX log θ−θ/x! is an exponential family,
so the MLE solves EθX = X; the MLE is therefore θ̂ = X. Its risk is

R(θ) =
1

θ
Eθ
[
(X − θ)2

]
= 1.

(b) The posterior density is

p(θ | X) ∝θ p(θ) · p(x | θ)
∝θ θk−1e−θβ · θxe−θ

∝θ θx+k−1e−θ(β+1)

∝ Gamma(x+ k, β + 1).

Hence θ | X ∼ Gamma(X + k, β+ 1). This is true for any setting of the
prior parameters so the prior is conjugate.

(c) The Bayes estimator solves

δ(X) = min
d

E
[

(d− θ)2

θ
| X
]

= min
d
d2E[θ−1 | X]− 2d+ E[θ | X]

= 1/E[θ−1 | X]

=
X + k − 1

β + 1
.

(d) For the minimization problem in the last part, the minimized value is

−δ(X) + E[θ | X] = −X + k − 1

β + 1
+
X + k

β + 1
=

1

β + 1
.

The Bayes risk, then, is EE
[
(δ(X)−θ)2

θ | X
]

= 1
β+1 .

(e) Taking arbitrary k > 1, the sequence Γ(k, βn) has limiting risk equal to
1, which is also the sup-risk of the MLE. Hence it is a least-favorable
sequence and the MLE is minimax.

3



(f) For the usual squared error loss, the Bayes estimator is the posterior
mean and the conditional expectation of the loss (given X) is therefore
the posterior variance, which is (X + k+ 1)/(1 + β)2. The Bayes risk is
then

E
X + k + 1

(1 + β)2
=
k/β + k + 1

(1 + β)2
,

where we use EX = Eθ = k/β. If we fix k > 1 and send β → 0, the
Bayes risk tends to ∞. The minimax risk is larger than any Bayes risk,
so it is also infinite.
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2. ANOVA with random effects (25 points, 5 points / part).

Some useful facts for this problem:

• For σ > 0 and µ ∈ R, the Gaussian density for X ∼ N(µ, σ2) is
1√
2πσ2

exp{− (x−µ)2
2σ2 }. If σ2 = 0 then X = 0 almost surely.

• For a positive integer k, the χ2
k density for X ∼ χ2

k is

1

2k/2Γ(k/2)
xk/2−1e−x/2.

Its mean and variance are k and 2k, respectively.

Assume we observe Xij for i = 1, . . . ,m and j = 1, . . . , n, and consider
the hierarchical Gaussian model

αi
i.i.d.∼ N(0, τ2)

Xij | α
ind.∼ N(µ+ αi, σ

2).

Define the following quantities for the purposes of this problem:

Xi =
1

n

∑
j

Xij ,

S2
i =

1

n− 1

∑
j

(Xij −Xi)
2,

X =
1

nm

∑
i,j

Xij , and

S2
B =

1

m− 1

∑
i

(Xi −X)2 (the B stands for ”between groups”).

The parameters µ ∈ R, τ2 ≥ 0, and σ2 > 0 are unknown. α1, . . . , αm are
unobserved random variables but they are not parameters, and the model
could be rewritten without them.

In this problem, unless otherwise stated, you do NOT need to show
tests and confidence intervals are UMP(U) or UMA(U). Where I ask you to
give an explicit formula, it is fine for the formula to be in terms of quantiles
of one or more distributions from class.

(a) Show that S2
B, S

2
1 , . . . , S

2
m are mutually independent and give their dis-

tribution.
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(b) Find a finite-sample, equal-tailed confidence interval for µ. Give an
explicit formula.

(c) Give a finite-sample test of the null hypothesis H0 : τ2 = 0 vs H1 :
τ2 > 0. Give an explicit formula for the test statistic and the critical
value.

(d) (*) Find a finite-sample, equal-tailed confidence interval for τ2/σ2. Give
an explicit formula.

(e) (*) Show that the model (with the additional restriction that τ2 > 0) is
a three-parameter exponential family and

(
X, S2

B,
∑

i S
2
i

)
is a complete

sufficient statistic.
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2. Solution.

(a) Xi and S2
i are both functions of (Xi1, . . . , Xi,n), which are mutually

independent across i = 1, . . . ,m. Furthermore, Xi and S2
i are inde-

pendent of each other within each i, as we have shown by e.g. Basu’s
theorem. Hence (X1, . . . , Xm, S

2
1 , . . . , S

2
m) are 2m independent random

variables, with

Xi
i.i.d.∼ N(µ, τ2 + σ2/n)

S2
i

i.i.d.∼ σ2

n− 1
χ2
n−1.

As a result, S2
B ∼

τ2+σ2/n
m−1 χ2

m−1, and it is independent of (S2
1 , . . . , S

2
m)

because it is a function of (X1, . . . , Xm).

(b) Because X = N(µ, τ2/m+ σ2/nm), we have

√
m
X − µ√
S2
B

∼ tm−1.

As a result, X ±
√

S2
B
m tm−1(α/2) is an exact 1− α confidence interval.

(c) (Common mistake: Note that we cannot use S2
B alone to do this test

because its distribution depends on the nuisance parameter τ2.)

Combining evidence across the within-group sample variances gives us
the combined within-group variance

S2
W =

1

m

∑
i

S2
i ∼

σ2

m(n− 1)
χ2
m(n−1).

Because S2
W is independent of S2

B, we have

S2
B

S2
W

∼ τ2 + σ2/n

σ2
Fm−1,m(n−1) = (τ2/σ2 + n−1)Fm−1,m(n−1).

As a result,

nS2
B/S

2
W ∼ (nτ2/σ2 + 1)Fm−1,m(n−1)

H0= Fm−1,m(n−1)

so we can reject the null when that statistic is above Fm−1,m(n−1)(α).
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(d) Using the same logic, for τ > 0 we can get an equal tailed test of
H0 : τ2/σ2 = ρ vs. the two-sided alternative H1 : τ2/σ2 6= ρ by
rejecting when Tρ = n

nρ+1S
2
B/S

2
W is either above a = Fm−1,m(n−1)(α/2)

or below b = Fm−1,m(n−1)(1− α/2). Hence the acceptance region is{
b ≤ n

nρ+ 1
S2
B/S

2
W ≤ a

}
leading to confidence interval

C(X) =

[
S2
B

aS2
W

− 1

n
,

S2
B

bS2
W

− 1

n

]
.

(e) Let Xi = (Xi1, . . . , Xin) denote the ith group of observations. The Xi

are independent multivariate Gaussians with mean µ1 = (µ, . . . , µ) and
covariance matrix Σ = σ2In+τ211′ (that is, the variance of Xij is σ2+τ2

and the within-group covariance is τ2). The inverse covariance matrix
has the same form: Σ−1 = θIn+ ζ11′ for some θ(τ2, σ2) > 0, ζ(τ2, σ2) <
0.

As a result, the likelihood is

p(X) = (2π)−nm/2
m∏
i=1

exp

{
−1

2
(Xi − µ1)′Σ−1(Xi − µ1)

}

= (2π)−nm/2
m∏
i=1

exp

θ‖Xi‖2/2− ζ(
∑
j

Xij)
2/2 + (nµζ + µθ)

∑
j

Xij −A(θ, ζ, µ)


= (2π)−nm/2 exp

{
θ
∑
i

‖Xi‖2/2− ζ
n2

2

∑
i

X
2
i + nm(nµζ + µθ)X −A(θ, ζ, µ)

}
.

This is a full-rank three-parameter exponential family because the natu-

ral parameter space contains an open set, so T =
(∑

i ‖Xi‖2,
∑

iX
2
i , X

)
is a complete sufficient statistic.

We have shown in class that (m − 1)S2
B + mX

2
=
∑

iX
2
i , and (n −

1)S2
i + nX

2
i = ‖Xi‖2. Therefore, we can reconstruct

(
X, S2

B,
∑

i S
2
i

)
from T and vice-versa.
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3. “And if you ever saw it...” (24 points, 6 points / part).

Some useful facts for this problem:

• For n ∈ {0, 1, . . .} and p ∈ [0, 1]d with
∑
pi = 1, the multinomial

density for X ∼ Multinom(n, p) is

px11 · · · p
xd
d

n!

x1! · · ·xd!
, on x ∈ {0, . . . , n}d with

∑
i

xi = n.

An ecologist is interested in estimating the total population of reindeer
in a wildlife preserve near the North Pole. She makes two visits to the
preserve on two consecutive days and looks for reindeer. Each time she
finds a reindeer she marks it with a unique identifying tag, so she can tell
if she sees the same reindeer twice (in ecology this type of study is called a
capture-recapture or mark-recapture study).

Assume that the same population of n of reindeer is present in the pre-
serve on both days, and each reindeer on each day has the same probability
π ∈ (0, 1) of being seen by her, independently across the reindeer and the
days (so the detections / non-detections are like 2n i.i.d. “coin flips” each
with success probability π). Note that n is the unknown parameter of in-
terest and π is an unknown nuisance parameter.

Let N11 denote the number of reindeer she sees both days, N10 the
number she sees the first day not the second, and N01 the number she sees
the second day but not the first. (Note that N00, the number of reindeer
she sees on neither day, is not observed.)

(a) Write down the likelihood for the model as a function of N01, N10, and
N11 and show that T = (N01 +N10, N11) is a sufficient statistic for the
model.

You do NOT need to show a sufficiency reduction from the Bernoulli
model of detected/non-detected “coin flips” for each reindeer-day; after
all we do not really get to observe the data for that model because we
don’t know how many reindeer went undetected on both days. Just
start with N01, N10, N11 as the data and n and π as the parameters.

(b) (*) Show that T is minimal sufficient (for this part you may assume we
already know it is sufficient).

(c) Define the estimator

n̂ =
(N01 +N10 + 2N11)

2

4N11
.
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Show that n̂ is consistent in the sense that n̂/n
p→ 1 as n → ∞ with π

fixed.

(d) Find the asymptotic distribution of n̂ from part (c) as n → ∞ with π
fixed. You should center and scale appropriately so that it has a non-
degenerate limiting distribution (that is, after centering and scaling it
shouldn’t converge in probability to a constant).
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3. Solution.

(a) (Common mistake: In applying the factorization theorem we need to
treat n as an unknown parameter: n!/(n−N11−N10−N01)! is not just
a function of the data.)

There are four possible outcomes for each reindeer, labeled 00 (unde-
tected twice), 01 (undetected then detected), 10 (detected then unde-
tected), and 11 (detected twice), which occur respectively with proba-
bility p00 = (1 − π)2, p01 = p10 = π(1 − π), and p11 = π2. The counts
N00, N01, N10, N11 record how many times each outcome happens, so

(N00, N01, N10, N11) ∼ Multinom(n, ((1− π)2, π(1− π), π(1− π), π2))

= (1− π)2N00 · (π(1− π))N10+N01 · π2N11 · n!

N00!N01!N10!N11!
,

=

(
π

1− π

)2N11+N10+N01

· n!

(n−N11 −N01 −N10)!
· 1

N01!N10!N11!
,

where the first two factors are functions of T = (N11, N01 + N10) and
the parameters (n, π) but the last factor is only a function of the data.
By the factorization theorem, then, T is sufficient.

(b) If T can be computed from the collection of all likelihood ratios (and
if it is also sufficient, as we have just shown it is), then it is minimal
sufficient. The likelihood ratio between (n, π) and (ñ, π̃) is(

π(1− π̃)

π̃(1− π)

)2N1+N10+N01

· n!

ñ!
· (ñ−N11 −N10 −N01)!

(n−N11 −N10 −N01)!

By taking n = ñ = N11 − N10 − N01 and varying π/π̃, we can learn
2N11 +N10 +N01; whereas by taking π = π̃ = 0.5 and varying n and ñ,
we can learn N11 +N11 +N10 +N01; knowing both of these is equivalent
to knowing T .

(c) Note that Nij/n→ pij by LLN, since it is an average of n i.i.d. Bern(pij)
random variables which have finite expectation. Dividing by n2 in the
numerator and n in the denominator and applying the continuous map-
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ping theorem, we get

n̂

n
=

(N01/n+N10/n+ 2N11/n)2

4N11/n

p→ (2p01 + 2p11)
2

4p11
(continuous since p11 > 0)

= (2π(1− π) + 2π2)2/4π2 = 1.

(d) By grouping together the outcomes 01 and 10 we can get a reduced
multinomial

(N00, N10 +N01, N11) ∼ Multinom(n, (p00, 2p01, p11)),

which is also a sum of n i.i.d. Multinom(1, (p00, 2p01, p11)) random vari-
ables which have finite variance. Restricting attention to the two entries
we actually observe and then applying the CLT gives

1√
n

((
N10 +N01

N11

)
−
(

2np01
np11

))
⇒ N2 (0, Σ)

where

Σ =

(
2p01(1− 2p01) −2p01p11
−2p01p11 p11(1− p11)

)
=

(
2π(1− π)(1− 2π(1− π)) −2π(1− π)π2

−2π(1− π)π2 π2(1− π2)

)
We will apply delta method to the function f(t1, t2) = (t1 + 2t2)

2/4t2:

∇f(t1, t2) =

(
1 +

t1
2t2

, 1− t21
4t22

)
.

Applying the delta method to f
(
N10+N01

n , N11
n

)
gives

√
n

(
n̂

n
− 1

)
=
√
n

(
f

(
N10 +N01

n
,
N11

n

)
− f(2p10, p11)

)
⇒ N(0, σ2),

where σ2 = ∇f(2p10, p11)
′Σ∇f(2p10, p11). After a lot of algebra we

can simplify σ2 = (1 − π)2/π2, but we would award full credit for the
unsimplified form as described above.
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4. Nonlinear regression (24 points, 6 points / part).

Note the Gaussian density is printed in the preamble of Problem 2.
We are given a sample of n pairs (xi, Yi) where x1, . . . , xn ∈ R are fixed

real numbers and

Yi = g(α+ βxi) + εi, where εi
ind.∼ N(0, σ2h(xi)).

Assume (except where otherwise specified) that:

• g : R → R is a known function which is strictly increasing and in-
finitely differentiable.

• h : R→ (0,∞) is a known continuous function.

• α, β ∈ R and σ2 > 0 are unknown

Finally, let ri = Yi − g(α̂ + β̂xi) denote the ith residual. Throughout the
problem, assume we are estimating the parameter vector (α, β, σ2) jointly
by maximum likelihood; let (α̂, β̂, σ̂2) denote the joint MLE.

(a) Show that the MLE for α and β is found by setting weighted averages
of the residuals to 0:

n∑
i=1

wiri =

n∑
i=1

wirixi = 0,

and give explicit expressions for the weights wi in terms of the data, the
functions g and h, and the maximum likelihood estimators α̂, β̂, σ̂2.

(b) Give an explicit expression for the MLE for σ2, i.e. σ̂2, in terms of the
data, the functions g and h, and the maximum likelihood estimators
α̂, β̂.

(c) (*) Now assume (for this part ONLY) that instead of fixed numbers we
observe i.i.d. random variables X1, . . . , Xn, which are continuous and
bounded random variables (|Xi| ≤ B almost surely, for some B > 0.)
Give the asymptotic distribution of the maximum likelihood estimators
(α̂, β̂) in terms of the functions g and h, and expectations of suitable ran-
dom variables. The limit is taken as n→∞ with the other parameters
fixed.

You may assume without proof that (α̂, β̂, σ̂2) are consistent for the true
population values, and that all of the regularity conditions from class
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for our theorem on the asymptotic distribution of the MLE hold (the
log-likelihood and its derivatives are well-behaved in the required sense).
You do not need to write down what the conditions are, either.

(Hint: it might be easier to do the problem assuming σ2 is known, and
then explain why the answer doesn’t change when σ2 is unknown.)

(d) (*) We now go back to assuming the xi values are fixed. Now assume
h(z) ≡ 1 but g is completely unknown (apart from the restrictions de-
scribed in the preamble: strictly increasing and infinitely differentiable).
Give a finite-sample test of H0 : β ≤ 0 vs H1 : β > 0. You should
provide a test statistic and describe how to calculate the critical value.
For full credit you must show your test controls the rejection probability
throughout the composite null hypothesis (that is, for all valid choices
of g, α, and σ2.)

Since we are already using the letter α for the intercept, I suggest using
a to denote the significance level in your answer.
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4. Solution

(a) The log likelihood is

1

2σ2

n∑
i=1

[
(Yi − g(α+ βxi))

2

h(xi)
− 1

2
log(2πσ2h(xi))

]
The first derivative with respect to α is

1

σ2

n∑
i=1

[
(Yi − g(α+ βxi))

ġ(α+ βxi)

h(xi)

]
=

1

σ2

∑
i

riwi,

for wi = ġ(α+ βxi)/h(xi). Similarly, the gradient with respect to β is

1

σ2

n∑
i=1

riwixi.

Any local minimizer of the log-likelihood sets the gradient equal to zero.
(Remark: we gave full credit for just setting the derivative to zero, but
the question statement should have been clearer about the difference
between local optimality and global optimality: it is a necessary but not
sufficient condition that the gradient should be zero, but it is possible for
there to be more than one local minimum. It is also possible, I realized
later, to come up with counterexamples where there is no MLE because
the likelihood is maximized at infinity.)

Note that our estimate of σ2 plays no role in determining α̂ and β̂; we
would get the same estimators for α and β whether we estimate σ2 or
whether it is known. This will be useful in part (c).

(b) Differentiating with respect to σ2 gives

− 1

2σ4

n∑
i=1

[
(Yi − g(α+ βxi))

2

h(xi)

]
− n

2σ2
,

and setting the derivative equal to 0 while the other parameters are at
their MLEs gives

σ̂2 =
1

n

n∑
i=1

[
(Yi − g(α̂+ β̂xi))

2

h(xi)

]
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(c) First assume σ2 > 0 is known. Then the only two unknown parameters
are α and β, and the score is

1

σ2

(∑
i

riwi,
∑
i

riwiXi

)
.

The variance of the score conditional on X is

Var

(∑
i

(Yi − g(α+ βXi))
ġ(α+ βXi)

σ2h(Xi)

(
1

Xi

)
| Xi

)

=
∑
i

ġ(α+ βXi)
2

σ4h(Xi)2
Var(Yi − g(α+ βXi) | Xi)

(
1 Xi

Xi X2
i

)
=
∑
i

ġ(α+ βXi)
2

σ2h(Xi)

(
1 Xi

Xi X2
i

)
.

The expectation of the score given X is zero, so the marginal variance
is simply the expectation of the conditional variance:

J(α, β) = Varα,β(∇`(α, β)) =
n

σ2
E
[
ġ(α+ βXi)

2

h(Xi)

(
1 Xi

Xi X2
i

)]
.

Note that the exam should have guaranteed h(Xi) didn’t have positive
density at zero; that could make the expectation infinite. Assuming it
is not infinite though, and the conditions hold for our theorem on the
asymptotic distribution, then we have

√
n

((
α̂

β̂

)
−
(
α

β

))
⇒ N2(0, J(α, β)−1).

If instead σ2 is unknown, nothing actually changes because, as noted in
part (a), the MLE (α̂, β̂) is the same regardless of σ2, which merely scales
the log-likelihood up or down. Since it is the same random variable
regardless of whether σ2 is known or estimated, it also has the same
limiting distribution regardless.

(d) Let µi = g(α + βxi) and assume without loss of generality that µi is
non-decreasing in i. If β = 0 then µ1 = · · · = µn and the Yi values
are i.i.d., but if β > 0 then the means are increasing too (and if β < 0
the means are decreasing). We can use a permutation test whose test
statistic is meant to pick up correlation between x and µ, for example
T (Y ) = x′Y . We use a Monte Carlo version of the permutation test
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as usual: take B random permutations and reject if T (Y ) is among the
ba(B + 1)c largest of T (Y ), T (π1Y ), . . . , T (πBY ).

If Yi = µi + εi and assume β ≤ 0. Then for a generic permutation π,

T (πY ) = x′(πµ) + x′(πε).

Note that (x′ε, x′(π1ε), x
′(πBε)) are exchangeable no matter what, but

x′µ ≤ x′(πµ) for all π; therefore T (Y ) has a less than a chance of being
among the ba(B + 1)c largest values.
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