
Final Examination: QUESTION BOOKLET

Prof. Will Fithian

Fall 2020

• The exam begins at 3:10pm and ends at 6:00pm. There is a grace period for
turning in the exam until 6:10pm; after that, the exam accrues a 20-point
penalty plus 20 points more for every additional 10 minutes of lateness. If
you are unable to submit to Gradescope, take timestamped photos and send
them to us by email as soon as you possibly can.

• Any communication with classmates or anyone else other than me during the
exam, about any subject remotely related to statistics, is strictly forbidden.
That includes statements like “Problem 2 is so hard!”

• The exam is open book, open notes, open lecture videos, and any general
resources from the Internet (not any materials specifically related to this
test, obviously). These are not standard problems so hunting around for the
answers to them in textbooks is unlikely to be worth your time.

• Some students are taking the exam later due to time zone issues.
Do not post anything about the exam on Piazza until I post the
solutions tomorrow afternoon.

• All parts of all problems are worth 5 points. There are 20 total parts, for 100
total points.

• Be neat! If we can’t read it, we can’t grade it.

• You can treat any results from lecture or homework as “known,” and use
them in your work without rederiving them, but do make clear what result
you’re using.

• For a multi-part problem, you may treat results of previous parts as given (if
you don’t prove the result for part (a), you can still use it to solve part (b)).

• I have starred some parts which I believe are the most difficult, and which I
expect most students won’t necessarily be able to solve in the time allotted.
They are not worth more points than the less difficult parts, so don’t waste
too much time on them until you’re happy with your answers to the latter.

• Be careful to justify your reasoning and answers. We are primarily interested
in your understanding of concepts, so show us what you know.

• You can ask questions by email to me, with [210A Exam] in the subject line,
and I will respond as quickly as I can. But my answer to most questions is
just “I am satisfied with the wording of the exam as written.”

• Check your email every so often just in case I have to correct something.

Good luck!
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1. One Poisson, two Poissons (30 points, 5 points / part).

Some useful facts / notation for this problem:

• For θ > 0, the Poisson density for X ∼ Pois(θ) is θxe−θ

x! on x = 0, 1, . . ..
The mean and variance are both θ.

• Let P (n) denote the set of integers 0 ≤ i ≤ n with the same parity
(odd/even) as n, i.e. for which n− i is even:

P (n) = {i ∈ 0, 1, . . . , n : n− i is even},

so for example P (10) = {0, 2, 4, 6, 8, 10} while P (9) = {1, 3, 5, 7, 9}.

Suppose we observe two independent random variables, with

X ∼ Pois(θ), and Y ∼ Pois(θ2),

where θ > 0 is an unknown parameter.

(a) Show that the model is an exponential family and find its complete
sufficient statistic.

(b) Give an explicit expression for the UMVU estimator of θ. Evaluate it
when X = Y = 2 (give your answer as a fraction, or a decimal with at
least 3 significant digits).

(c) Now suppose that you observe an i.i.d. sample of n pairs (X1, Y1), . . . , (Xn, Yn)
where each pair has the same distribution specified above. That is,
Xi ∼ Pois(θ) and Yi ∼ Pois(θ2), independently. Give an explicit expres-
sion for the MLE θ̂n as a function of the data.

If
∑n

i=1Xi =
∑n

i=1 Yi = 2n, find the MLE for θ (give your answer as a
fraction, or a decimal with at least 3 significant digits).

(d) Find the asymptotic distribution of θ̂n as n → ∞. (Don’t worry about
checking any regularity conditions for this part).

(e) A simpler estimator for θ is

θ̃n =
Xn + Y

1/2
n

2
,

where Xn = n−1
∑n

i=1Xi and Y n = n−1
∑n

i=1 Yi.

Find the asymptotic distribution of this estimator. Justify why it has
the distribution you say and give its asymptotic relative efficiency.
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(f) Now suppose we want to test our model against the alternative hy-
pothesis that (X1, Y1), . . . , (Xn, Yn) are still i.i.d. pairs of independent
Poisson random variables, but their means do not have the relationship
we posited. In other words, in the expanded model

Xi ∼ Pois(θ), Yi ∼ Pois(λ), i = 1, . . . , n,

Test H0 : λ = θ2 against the alternative H1 : λ 6= θ2, for large n.
Suggest an asymptotic test from class or homework: give an explicit
expression for the test statistic and an explicit rejection cutoff in terms
of a quantile of a known distribution. (If you choose a well-known test
that is appropriate for this kind of setting then you do not need to
justify why your test has the correct null distribution in this case).

(Hint: there are at least three choices of asymptotic tests from class
or homework; it might pay off to take a moment to consider which is
easiest to carry out here).
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1. Solution

(a) The likelihood is

pθ(x, y) =
θxe−θ

x!
· θ

2ye−θ
2

y!

= exp{(x+ 2y) log θ − θ − θ2} 1

x!y!
,

a one-parameter exponential family with natural parameter η = log θ,
complete sufficient statistic T = X + 2Y , normalizing constant B(θ) =
θ + θ2, and carrier density 1

x!y! (wrt the counting measure on pairs of
non-negative integers). T is complete sufficient because log θ varies over
the entire real line, which is an open set.

(b) Because EθX = θ, we can get a UMVUE by Rao-Blackwellizing it, to
obtain the estimator

δ(t) = E[X | X + 2Y = t] =

 ∑
x∈P (t)

x

x!
(
t−x
2

)
!

/ ∑
x∈P (t)

1

x!
(
t−x
2

)
!

 ,

where P (t) includes all possible values of X given X + 2Y = t, and
the factors in the likelihood that involve θ cancel in the numerator and
denominator.

If X = Y = 2 then T = 6, so

δ(6) =
0

0!3! + 2
2!2! + 4

4!1! + 6
6!0!

1
0!3! + 1

2!2! + 1
4!1! + 1

6!0!

=
486

331
≈ 1.47

(c) An i.i.d. sample from an exponential family with sufficient statistic
Xi + 2Yi is just another exponential family with sufficient statistic T =∑

iXi+
∑

i 2Yi. The MLE sets the complete sufficient statistic equal to
its expectation (in this case n(θ + 2θ2)) and solves for θ:

2nθ̂2n + nθ̂n = T ⇐⇒ θ̂n =
−n±

√
n2 + 8nT

4n
=
−1±

√
1 + 8T/n

4

Because θ̂n > 0, we choose the positive root and the MLE is

θ̂n =

√
1 + 8T/n

4
− 1

4

If T = 6n, we obtain θ̂n = 3
2 = 1.50 (1.5 obviously acceptable too).
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(d) As a function of θ, the log-likelihood and its derivatives are

`n(θ) = log θ
∑
i

(Xi + 2Yi)− n(θ + θ2)−
∑
i

log(Xi!Yi!)

˙̀
n(θ) =

1

θ

∑
i

(Xi + 2Yi)− n(1 + 2θ)

῭
n(θ) = − 1

θ2

∑
i

(Xi + 2Yi)− 2n

We can calculate the Fisher information as either the variance of the
score, in which case

J1(θ) = Varθ( ˙̀
1(θ)) =

1

θ2
Varθ(Xi + 2Yi) =

θ + 4θ2

θ2
=

1 + 4θ

θ
,

or as minus the expectation of the second derivative, in which case

J1(θ) = −E ῭
1(θ) =

1

θ2
E(Xi + 2Yi) + 2 =

θ + 2θ2

θ2
+ 2 =

1 + 4θ

θ
.

Either way, we can apply our usual result about the asymptotic distri-
bution of the MLE to obtain

√
n(θ̂n − θ)⇒ N

(
0, J1(θ)

−1) = N

(
0,

θ

1 + 4θ

)
.

(e) This is a delta method problem for the differentiable function g(x, y) =

(x+
√
y)/2, ∇g(x, y) =

(
1
2 ,

1
4
√
y

)
. The argument to g is (Xn, Y n), whose

distribution is given by

√
n

((
Xn

Y n

)
−
(
θ

θ2

))
⇒ N2

(
0,

(
θ 0
0 θ2

))
,

from the CLT. The correct limiting variance is

∇g(θ, θ2)′
(
θ 0
0 θ2

)
∇g(θ, θ2) =

θ

4
+

1

16
=

4θ + 1

16
,

and g(θ, θ2) = θ, so

√
n
(
θ̃n − θ

)
⇒ N

(
0,

4θ + 1

16

)
.
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The asymptotic relative efficiency is atrocious:

AREθ =
θ/(1 + 4θ)

(4θ + 1)/16
=

16θ

16θ2 + 8θ + 1
=

1

θ + 1/2 + 1/θ
,

which is maximized at 40% when θ = 1, but tends to 0 as θ becomes
large or small (you did not need to analyze the ARE on your exam, the
formula would be enough).

Essentially, this is because as θ → ∞, θ2 � θ so the estimator should
be driven by the much more informative Y n, but as θ → 0, θ2 � θ
so the estimator should be driven by the much more informative Xn.
Using the sufficient statistic Xn + 2Y n as our vehicle for estimation (as
the UMVU and MLE both do) gets this right, because the one with
larger mean will dominate the sum. By contrast θ̃n does a very poor
job because it gives both sources of information, Xn and Y n, an equal
voice in determining the “ensemble” estimator.

This automatic, adaptive reweighting of evidence from Xn vs. Y n is
just the kind of “everyday miracle” that happens when we use the MLE
(or even just when we make a sufficiency reduction). We’d have to think
very hard to always get this kind of thing right if we had to design an
estimator from scratch.

(f) The easiest choice here is the generalized likelihood ratio test. We have
already calculated the MLE under the null in part (c), and the log-
likelihood at the null MLE is

max
H0

`n = `n(θ̂n;X,Y ) = n(Xn+2Y n) log θ̂n−nθ̂n−nθ̂2n−
n∑
i=1

log(Xi!Yi!).

Under the full model, the MLE for (θ, λ) is just (Xn, Y n), so the log-
likelihood is

max
θ,λ

`n = nXn logXn−nXn−
n∑
i=1

log(Xi!)+nY n log Y n−nY n−
n∑
i=1

log(Yi!).

The GLRT statistic is twice the difference, which we can simplify a bit
to

G(X) = 2n

{
Xn

(
log

Xn

θ̂n
− 1

)
+ Y n

(
log

Y n

θ̂2n
− 1

)
− θ̂n(1 + θ̂n)

}
,
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with θ̂n as defined in part (c). The null has one parameter and the
alternative has two, so we should reject if G(X) is above the upper α
quantile of a χ2

1 distribution.
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2. A problem of limited means (20 points, 5 points / part).

Some useful facts for this problem:

• The uniform density Unif[a, b] with parameters a < b has density

1{a ≤ x ≤ b}
b− a

, for x ∈ R.

Its mean and variance are (a+ b)/2 and (b− a)2/12, respectively.

• The exponential distribution Exp(λ) with scale parameter λ has den-
sity

1

λ
e−x/λ, for x > 0.

The Gaussian density is printed in the preamble of Problem 2.
Assume that we are in the Gaussian sequence model with

Xi
ind.∼ N(µi, 1), for i = 1, . . . , d,

with the additional assumption that |µi| ≤ θ for some θ > 0. Assume unless
specified otherwise that θ is known.

(a) Give the MLE of µ1, . . . , µd in this model.

(b) Give an unbiased estimator for the mean squared error of the MLE, as
a function of X1, . . . , Xd and θ.

(c) Now, suppose we introduce Bayesian assumptions: we assume addi-

tionally that µi
i.i.d.∼ Unif[−θ,+θ], still with θ known. Give an explicit

expression for the Bayes estimator of µ1, . . . , µd using squared error loss.

(d) Now, we relax the assumption that θ is known and introduce a hierar-
chical Bayesian model with an exponential hyperprior for θ:

θ ∼ Exp(λ)

µi | θ
i.i.d.∼ Unif[−θ,+θ], i = 1, . . . , d

Xi | θ, µ
ind.∼ N(µi, 1), i = 1, . . . , d.

Suggest a Gibbs sampler algorithm to sample from the posterior distri-
bution of (θ, µ1, . . . , µd). Give the update rules explicitly.
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2. Solution

(a) The likelihood is

`(µ;X) =
1

2

∑
i

(Xi − µi)2,

so the likelihood is maximized by taking µ̂i as close to Xi as possible,
subject to the constraint that |µ̂i| ≤ θ. As a result,

µ̂i =


θ Xi > θ

Xi −θ ≤ Xi ≤ θ
−θ Xi < −θ

.

(b) This is a SURE problem. Defining

hi(x) = xi − µ̂i(x) =


xi − θ xi > θ

0 −θ ≤ xi ≤ θ
xi + θ xi < −θ

,

we have

Dh(x)ii =
∂hi(x)

∂xi
=

{
0 −θ ≤ xi ≤ θ
1 otherwise

.

Then Stein’s unbiased risk estimator is

R(X) = d+
d∑
i=1

hi(X)2 − 2
d∑
i=1

Dh(X)ii

= d+
d∑
i=1

(|Xi| − θ)2+ − 2
d∑
i=1

1{|Xi| > θ}.

(c) Under this model, the pairs (µi, Xi) are i.i.d. so the posterior distri-
bution only depends on Xi. The prior for µi is 1

2θ1{|µi| ≤ θ} and the

likelihood is φ(Xi − µi) where φ(z) = (2π)−1/2e−z
2/2, so the posterior

density is

p(µi | X) =
φ(Xi − µi)∫ θ

−θ φ(Xi − u) du
· 1{|µi| ≤ θ},

where the 1/2θ term cancels on the top and the bottom. This is the
distribution of a N(Xi, 1) random variable truncated to the interval
[−θ, θ], which we can write as N(Xi, 1)1{|µi| ≤ θ}.
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The Bayes estimator is the posterior expectation,

Eθ[µi | X] =

∫ θ
−θ uφ(Xi − u) du∫ θ
−θ φ(Xi − u) du

.

(d) We have just shown that, conditional on (θ,X), the coordinates of µ are
truncated normal random variables:

µi | X, θ
ind.∼ N(Xi, 1)1{|µi| ≤ θ}.

They are conditionally independent because the pairs (µi, Xi) are i.i.d.
given θ (note they are not marginally independent if θ is random). The
conditional density of θ given (µ,X) is proportional to

p(θ | µ,X) ∝ 1

λ
e−θ/λ

d∏
i=1

1

2θ
· 1{|µi| ≤ θ} · φ(Xi − µi)

∝ θ−d e−θ/λ · 1
{
θ ≥ max

i
|µi|
}
,

so normalizing it gives

p(θ | µ,X) =
θ−d e−θ/λ∫∞

maxi |µi| u
−d e−u/λ du

· 1
{
θ ≥ max

i
|µi|
}
. (1)

We could sort of call this a truncated Gamma(−d + 1, λ) distribution,
but the “shape parameter” is negative (note the density wouldn’t be
normalizable if the lower bound of the support were at 0). Anyway the
density is given explicitly above, so we can sample from it by plugging
a uniform random variable into its inverse CDF.

So the Gibbs sampler iterates between:

Step 1. Sample µ
(t+1)
1 , . . . , µ

(t+1)
n

ind.∼ N(Xi, 1)1{|µi| ≤ θ(t)}.
Step 2. Sample θ(t+1) from p(θ | µ(t+1), X) as given in (1).

I kind of wish I’d told you to use the improper “flat” prior on θ, with
p(θ) ≡ 1. Then the Gibbs update for θ would have been exactly a Pareto
distribution, which would have been kind of cool. Oh, well!
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3. Gamma palooza (25 points, 5 points / part).

Some useful facts for this problem:

• For shape parameter k > 0 (not necessarily an integer) and scale
parameter σ > 0, the Gamma(k, σ) distribution has density

1

σkΓ(k)
xk−1e−x/σ, for x > 0.

Its mean and variance are kσ and kσ2, respectively.

• The χ2
d distribution is Gamma(d/2, 2). It is usually defined when d is

an integer, but the density is still a proper density for any d > 0. The
same is true for distributions derived from the χ2 like t or F whose
“degrees of freedom” argument(s) can take on any positive real value.

Assume that we observe independent random variables Xij with

Xij
ind.∼ Gamma(ki, σj), for i = 1, . . . , n ≥ 2, and j = 1, 2.

Unless otherwise specified, assume all ki and σj are unknown and strictly
positive (different parts of the problem will consider simpler submodels).
Let Sj =

∑n
i=1Xij and Mi = Xi1Xi2.

(a) Show that T (X) = (S1, S2,M1, . . . ,Mn) is a complete sufficient statistic
for this model.

(b) Assume (for this part only) that k1, . . . , kn are known. Give an explicit
formula for an exact equal-tailed confidence interval for σ2/σ1, in terms
of the sufficient statistics described above and quantiles for one or more
known distributions from class.

(c) Assume instead (for this part only) that σ1 and σ2 are known, and also
it is known that k1 = k2 = · · · = kn = k, but the common value k is
unknown. Suggest a UMP test of the hypothesis H0 : k = k0 against
the alternative H1 : k > k0, where k0 is generic. Give the test statistic
and explain how to calculate the rejection cutoff (give an explicit recipe
that anyone can follow).

(d) Suppose (for this part only) that n = 2 with all of k1, k2, σ1, σ2 un-
known. Suggest an exact UMPU test of H0 : k1 = k2 against H1 : k1 >
k2. Say what test statistic you would use and give a precise mathemat-
ical description of the rejection cutoff, but you do not need to give an
explicit expression or recipe for how to calculate it.
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(e) (*) Drop all assumptions from previous parts, so n is arbitrary and no
parameters of the model are known.

Suppose that we begin doubting the validity of our Gamma model, and
we want to generalize it to replace the Gamma family with a generic
scale family:

Xij
i.i.d.∼ Gi(x/σj),

for a generic, unknown, continuous distribution function Gi that puts all
its mass on positive values of x (i.e., Gi(0) = 0). We want to guarantee
Type I error control no matter what G1, . . . , Gn are.

Explain how to calculate an exact 95% confidence interval for σ2/σ1.
Your interval must be nontrivial; we will not award any points for an-
swers like “flip a coin and cover the entire parameter space with proba-
bility 95%.”

(Hint: This problem is closely related to testing H0 : σ1 = σ2 against
H1 : σ1 > σ2. The testing problem might be easier to think about at
first, and partial credit will be awarded for making progress on it.)
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3. Solution

(a) The likelihood is

pk,σ(x) =
∏
i,j

1

σkij Γ(ki)
xki−1ij e−xij/σj

= exp

∑
i,j

ki log xij −
∑
i,j

xij/σj −
∑
i,j

ki log σj − log Γ(ki)

 1∏
i,j xij

= exp


n∑
i=1

ki logMi +

2∑
j=1

1

σj
Sj −

∑
i,j

ki log σj − log Γ(ki)

 1∏
i,j xij

,

and exponential family with natural parameter η =
(
k1, . . . , kn,

1
σ1
, 1
σ2

)
and sufficient statistic T (X) = (logM1, . . . , logMn, S1, S2). Equiva-
lently, (M1, . . . ,Mn, S1, S2) is complete sufficient as well since it is in
one-to-one correspondence with T (X). Furthermore, the natural pa-
rameter ranges over Rn+2

+ , which contains an open set, so the model is
full rank.

(b) If k1, . . . , kn are known then (S1, S2) is complete sufficient. We can make
a sufficiency reduction, after which we have

Sj
ind.∼ Gamma(k+, σj) =

σj
2
χ2
2k+ , where k+ =

∑
i

ki.

Let ρ = σ2/σ1 and R = S2/S1, then

R = ρ
S2/σ2
S1/σ1

∼ ρF2k+,2k+ .

As a result, if c1 and c2 are respectively the lower and upper α/2 quan-
tiles of F2k+,2k+ , then

1− α = Pρ [c1 ≤ R/ρ ≤ c2] = Pρ
[
R

c2
≤ ρ ≤ R

c1

]
.

So the CI is
[
R
c2
, Rc1

]
(note the ordering).

(c) If σ1 and σ2 are known, and k1 = · · · = kn = k, then the likelihood
reduces to the one-parameter exponential family,

pk(x) = exp

{
k
∑
i

logMi − n log(σ1σ2)− 2n log Γ(k)

}
· e
−S1/σ1−S2/σ2∏

i,j xij
,
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so we should reject for large values of P =
∏n
i=1Mi =

∏
i,j Xij , or

equivalently for large values of P1 = 1
σn1 σ

n
2

∏
i,j Xij , whose distribution

doesn’t depend on σ1, σ2. To find the rejection threshold for P1, which
is a product of 2n independent Gamma(k0, 1) random variables under
the null, we can repeatedly sample from this distribution and take the
upper α quantile of the empirical distribution. This is exact up to Monte
Carlo error, which we can make as small as we want.

(d) We can rewrite the likelihood again as

exp

{
k1 − k2

2
(logM1 − logM2) +

k1 + k2
2

(logM1 + logM2)

+
1

σ1
S1 +

1

σ2
S2 −

∑
i,j

ki log σj − log Γ(ki)

}
1∏
i,j xij

,

so that the first term in the exponent represents the parameter of interest
and the other three represent the nuisance parameters (k1 + k2, σ1, σ2).
The UMPU test, then, rejects for large values of M1/M2, conditional on
(M1M2, S1, S2).

(e) If ρ = σ2/σ1, then

Xi1, Xi2/ρ
i.i.d.∼ Gi(x/σ1), independently for i = 1, . . . , n.

We could use this to construct a permutation test of H0 : ρ = ρ0.
A sufficient statistic for the null model consists of the unordered sets
{Xi1, Xi2/ρ0} for i = 1, . . . , n. Write that statistic as U(X); then we
can sample from the distribution of X given U(X) by randomly per-
muting within each pair (Xi1, Xi2/ρ0) independently for each i. Under
alternative values of ρ > ρ0, we will tend to have Xi2/ρ0 > Xi1, so we
can pick any test statistic that will tend to be large when that is the
case. (Getting everything right up to here would be enough for 4 points
out of the possible 5).

If we pick a test statistic that we can easily evaluate for all the different
candidate values of ρ0, then we can get a confidence interval too. There
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are a lot of possible choices but a robust and convenient one would be

B(X; ρ0) =
n∑
i=1

1{Xi2/ρ0 > Xi1}

=
∑
i=1

1{Xi2/Xi1 > ρ0}

H0∼ Binom (n, 1/2) ,

because the exchangeability of (Xi1, Xi2/ρ0) under the null means each
indicator has an equal 50% chance to be 1 or 0. Let Ri = Xi2/Xi1,
then this is saying if ρ = ρ0 then the sample median value of Ri should
be about ρ0, and we reject if too many Ri values are above ρ0. If we
want to make the test two-sided, then we should reject if too many or
too few Ri values are above ρ0. This test statistic is convenient in part
because we don’t have to do Monte Carlo sampling; we just know the
null distribution of B and it doesn’t even depend on U .

Ignoring randomizing at the boundary, assume b1 ≥ 1 and b2 = n − b1
are respectively the lower and upper α/2 quantiles of Binom(n, 1/2) (if
b1 = 0 then n is too small for the binomial test to ever reject, so we
have to randomize at the boundary or use a different approach). Then
the two-sided permutation test fails to reject at level α if

b1 ≤
∑
i=1

1{Ri > ρ0} ≤ n− b1 ⇐⇒ R(n+1−b1) ≤ ρ0 < R(b1),

where R(1) > R(2) > · · · > R(n) are the order statistics of R1, . . . , Rn.
As a result, [R(n+1−b1), R(b1)] is a valid confidence interval for ρ (note
Pρ(R(b1) = ρ) = 0 so we can use the closed interval without affecting
the coverage).
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4. Apocalypse τ (25 points, 5 points / part).

Some useful facts for this problem:

• For σ2 > 0 and µ ∈ R, the Gaussian density for X ∼ N(µ, σ2) is

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
, for x ∈ R.

Its mean and variance are µ and σ2.

Assume we observe i.i.d. pairs (Xi, Yi) for i = 1, . . . , n, whereX1, . . . , Xn ∈
Rk are sampled from a known density q(x) and Yi are real numbers with

Yi = fτ (Xi) + εi, where εi
i.i.d.∼ N(0, σ2).

Assume the errors ε1, . . . , εn are independent of X1, . . . , Xn.
The parameters τ ∈ [−1, 1] and σ2 > 0 are fixed and unknown, but the

real-valued function fτ (x) is known up to its parameter τ .
Assume that

• fτ (x) is infinitely differentiable with respect to τ , with first and second
derivatives

gτ (x) =
∂f

∂τ
(x), and hτ (x) =

∂2f

∂τ2
(x).

• gτ (x) > 0 for all τ and x.

• |gτ (x)|, |hτ (x)| ≤ 1 for all τ and x.

(a) Assume (for this part only) that Xi are fixed instead of random, while

the errors still have the same distribution, εi
i.i.d.∼ N(0, σ2).

Consider testing H0 : τ = 0 against the alternative H1 : τ 6= 0 using
the test statistic

T =

∑n
i=1 g0(Xi)(Yi − f0(Xi))

σ̂ (
∑n

i=1 g0(Xi)2)
1/2

,

where

σ̂2 =
1

d

[
n∑
i=1

(Yi − f0(Xi))
2 −

[∑n
i=1 g0(Xi)(Yi − f0(Xi))

]2∑n
i=1 g0(Xi)2

]
What number should we plug in for d? Give the distribution of T under
the null, and justify your answer.
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(b) Now go back to assuming that Xi are random, sampled i.i.d. from an
unknown distribution. Show that the test from part (a) still works; i.e.
its distribution under the null is independent of X1, . . . , Xn.

(c) Assume (for this part only) that σ2 is known. Show that the MLE τ̂n
is consistent for τ as n→∞. (For full credit, please check appropriate
conditions).

(d) Continue to assume (for this part only) that σ2 is known. Assuming
the MLE is consistent, and τ ∈ (−1, 1) (i.e. not at the boundary of the
parameter space), find its asymptotic distribution as n → ∞. (You do
not need to check conditions for this).

(e) (*) Suppose we add an intercept to the model, so

Yi | X1, . . . , Xn
ind.∼ N(α+ fτ (Xi), σ

2).

Can we still estimate τ consistently as n → ∞ using maximum likeli-
hood? Prove or give a counterexample.
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4. Solution

(a) Let z = (g0(X1), . . . , g0(Xn)) ∈ Rn, which is a fixed nonzero vector, and
define the unit vector q1 = z/‖z‖. Under H0, Yi − f0(Xi) = εi, so the
test statistic is

T =
z′ε

σ̂‖z‖
=

q′1ε√
σ̂2
,

and the variance estimator is

σ̂2 =
1

d

[
‖ε‖2 − (q′1ε)

2
]

=
1

d

[
ε′(In − q1q′1)ε

]
=

1

d
‖Q′rε‖2,

where Qr ∈ Rn×(n−1) is chosen so QrQ
′
r = In − q1q

′
1, an (n − 1)-

dimensional projection matrix. Furthermore, Q′rq1 = 0 so Q′rε and
q′1ε are independent, with q′1ε ∼ N(0, σ2) and ‖Q′rε‖2 ∼ σ2χ2

n−1, under
the null, so we should take d = n− 1 and

T =
N(0, σ2)√
σ2

n−1χ
2
n−1

∼ tn−1.

(b) If we condition on X1, . . . , Xn, we are back in the same situation as
in part (a), and we have just derived that T is conditionally tn−1 dis-
tributed, given X1, . . . , Xn. If the conditional distribution of T given X
doesn’t depend on X, then T is independent of X.

(c) Because [−1, 1] is a compact parameter space, to apply our theorem
from class we only need to establish that the model is identifiable, and

Eτ0

[
sup

τ∈[−1,1]
|`1(τ)− `1(τ0)|

]
<∞.

The log-likelihood and its derivative for a single pair (Xi, Yi) is

`1(τ ;Xi, Yi) =
1

2σ2
(Yi − fτ (Xi))

2 − 1

2
log(2πσ2) + q(Xi)

˙̀
1(τ ;Xi, Yi) =

1

σ2
gτ (Xi)(Yi − fτ (Xi))

Because |gτ (Xi)| ≤ 1, the first derivative is bounded by

| ˙̀1(τ ;Xi, Yi)| ≤
|Yi − fτ (Xi)|

σ2

≤ |Yi − fτ0(Xi)|
σ2

+
|fτ (Xi)− fτ0(Xi)|

σ2

≤ |εi|+ 2

σ2
,
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where the last step uses the fact that

|fτ2(x)− fτ1(x)| ≤ |τ2 − τ1| sup
τ∈[−1,1]

|gτ (x)| ≤ 2,

for any x and τ1, τ2 ∈ [−1, 1]. As a result, for any τ0 ∈ [−1, 1], we have

Eτ0

[
sup

τ∈[−1,1]
|`1(τ)− `1(τ0)|

]
≤ Eτ0

[
sup

τ∈[−1,1]
|τ − τ0| ·

|εi|+ 2

σ2

]

≤ Eτ0
[

2|εi|+ 4

σ2

]
,

which is certainly finite.

As for identifiability, consider τ2 > τ1 and note

fτ2(x)− fτ1(x) = (τ2 − τ1)gτ̃(x)(x),

where τ̃(x) ∈ [τ1, τ2] is defined implicity by the mean value theorem.
Then

Eτ2Yi − Eτ1Yi = E [fτ2(Xi)− fτ1(Xi)] = (τ2 − τ1)E[gτ̃(Xi)(Xi)] > 0,

since gτ̃(Xi)(Xi) > 0 almost surely (we will accept more informal argu-
ments along the same lines).

(d) We have assumed consistency, and that τ is in the interior of the param-
eter space. The other conditions can be checked using similar methods
as in the previous part, but you did not need to check them. Continuing
our calculation from part (c), the second derivative of `1 is

῭
1(τ ;Xi, Yi) =

1

σ2
{
hτ (Xi)(Yi − fτ (Xi))− gτ (Xi)

2
}
,

and its expectation is

J1(τ) = Eτ
[
Eτ [

1

σ2
{
hτ (Xi)(Yi − fτ (Xi))− gτ (Xi)

2
}
| Xi]

]
=

1

σ2
Eτgτ (Xi)

2.

As a result, the asymptotic distribution of the MLE is

√
n (τ̂n − τ)⇒ N

(
0,

σ2

Eτgτ (Xi)2

)
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(e) No, we can’t (necessarily) estimate τ consistently anymore. The prob-
lem is that the intercept breaks our proof of identifiability. Indeed, let
fτ (x) ≡ τ , which satisfies all of the conditions in the preamble since
gτ (x) ≡ 1 and hτ (x) ≡ 0; then τ is unidentifiable in the model so there
is no way we can hope to estimate it using the MLE or any other method.

To get more specific in terms of the MLE, the likelihood function `n(α−
τ, τ ;Xi, Yi) is constant for τ ∈ [−1,+1] and any (α, τ) with α+ τ = Y n

is a valid MLE, so clearly the second coordinate can’t be converging to
the correct value of τ for any sequence of MLEs.
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