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Final Examination: QUESTION BOOKLET

Prof. Will Fithian

Fall 2021

• Do NOT open this question booklet until you are told to do so.

• Write your Student ID number (NOT your name) at the top of this page.

• Write your solutions in this booklet.

• No electronic devices are allowed during the exam.

• Be neat! If we can’t read it, we can’t grade it.

• You can treat any results from lecture or homework as “known,” and use
them in your work without rederiving them, but do make clear what result
you’re using. You do not need to explicitly check regularity conditions for
the theorems from class that required them.

• For a multi-part problem, you may treat the results of previous parts as given
(if you don’t prove the result for part (a), you can still use it to solve part
(b)).

• I have starred some parts which I believe are the most difficult, and which I
expect most students won’t necessarily be able to solve in the time allotted.
They are generally not worth more points than the less difficult parts, so
don’t waste too much time on them until you’re happy with your answers to
the latter.

• Be careful to justify your reasoning and answers. We are primarily interested
in your understanding of concepts, so show us what you know.

• Good luck!
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1. Regression with correlated errors (25 points, 5 points / part).

Some useful facts for this problem:

• For µ ∈ Rn and positive definite Σ ∈ Rn×n, the density for Z ∼ Nn(µ,Σ)
is

pµ,Σ(z) = |2πΣ|−1/2 exp

{
−1

2
(z − µ)′Σ−1(z − µ)

}
,

where | · | is the determinant (note the exponent of 1/2 is correct; it should
not be n/2). The mean is µ and the variance is Σ.

• If Z ∼ Nn(µ,Σ), and A ∈ Rk×n and b ∈ Rk are fixed, then

AZ + b ∼ Nk(Aµ+ b, AΣA′).

Suppose that for i = 1, . . . , n we observe fixed covariates xi ∈ Rd and random
response Yi = x′iβ + εi, for coefficient vector β ∈ Rd and εi ∈ R. The errors are
multivariate Gaussian with mean zero and positive definite covariance matrix Σ ∈
Rn×n. In terms of the full response vector Y ∈ Rn and design matrix X ∈ Rn×d
with ith row x′i, we have

Y = Xβ + ε, with ε ∼ Nn(0,Σ).

Assume n ≥ d ≥ 1 and X has full column rank. For parts (a) and (b), we will
assume Σ is known and we want to estimate β. For (c)-(e) we will assume Σ is
unknown.

(a) Show that Y follows a full-rank exponential family model and identify its com-
plete sufficient statistic.

Solution:
We can write the density for Y as

pβ(y) = |2πΣ|−1/2 exp

{
−1

2
(y −Xβ)′Σ−1(y −Xβ)

}
= exp

{
β′X ′Σ−1y − 1

2
β′X ′Σ−1Xβ

}
· |2πΣ|−1/2 exp{−y′Σ−1y/2}

= eβ
′T (y)−A(β)h(y),

for T (y) = X ′Σ−1y, h(y) = |2πΣ|−1/2 exp{−y′Σ−1y/2}, and A(β) =
β′X ′Σ−1Xβ/2. Because the natural parameter β can range over all of Rd,
the exponential family is full-rank and T (Y ) is complete.
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(b) Find the maximum likelihood estimator of β and give its distribution.

Solution:
The MLE for an exponential family sets

T (Y ) = X ′Σ−1Y = Eβ̂T (Y ) = X ′Σ−1Xβ̂ ⇐⇒ β̂ = (X ′Σ−1X)−1X ′Σ−1Y.

Its distribution, using the formula given in the preamble, is

β̂ ∼ N
(
β, (X ′Σ−1X)−1

)
.

(c) Now, for the remainder of the problem, suppose that Σ is unknown so we
have to estimate it. To facilitate this, we observe i.i.d. replicates Y (k) for
k = 1, . . . ,m, with distribution

Y (k) = Xβ + ε(k), with ε(k) i.i.d.∼ Nn(0,Σ).

Note that X and β are the same for k = 1, . . . ,m (they do not depend on k);
only the errors change (and the responses change as a result). Define

Y =
1

m

m∑
k=1

Y (k), and Σ̂ =
1

m− 1

m∑
k=1

(Y (k) − Y )(Y (k) − Y )′.

Show that Y and Σ̂ are independent of each other.

Solution:
Consider the model with Y (1), . . . , Y (m) i.i.d.∼ Nn(µ,Σ), with arbitrary µ ∈ Rn
and positive definite Σ. In the submodel where Σ is known, Σ−1Y is complete
sufficient (applying part (a) with X = In) and Σ̂ is ancillary, so by Basu’s
theorem Σ−1Y , and therefore also Y , is independent of Σ̂. The two statistics
are therefore independent for any µ and Σ, so in particular they are independent
if µ = Xβ for any Σ.

Common mistake: Y is not complete sufficient in the model with µ = Xβ,
for d < n.

(d) Show that Σ̂ is an unbiased estimator of Σ.

Solution:
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Note that Y (k) − Y = ε(k) − ε̄. For every i, j ∈ {1, . . . , d} we have

EΣ̂ij =
1

m− 1
E

[
m∑
k=1

(ε
(k)
i − ε̄i)(ε

(k)
j − ε̄j)

]

=
m

m− 1
E

[(
m− 1

m
ε

(1)
i −

1

m

∑
k>1

ε
(k)
i

)(
m− 1

m
ε

(1)
j −

1

m

∑
k>1

ε
(k)
j

)]
]

=
m

m− 1
·

[(
m− 1

m

)2

E
[
ε

(1)
i ε

(1)
j

]
+
∑
k>1

1

m2
E
[
ε

(k)
i ε

(k)
j

]]

= E[ε
(1)
i ε

(1)
j ] = Σij .

An alternative way to do it is to observe that
m∑
k=1

(ε(k) − ε̄)(ε(k) − ε̄)′ =

(
m∑
k=1

ε(k)ε(k)′
)
−mε̄ε̄′.

Then, because E [ε̄ε̄′] = Var(ε̄) = m−1Σ, we have

EΣ̂ij =
1

m− 1
E

[
m∑
k=1

(ε
(k)
i − ε̄i)(ε

(k)
j − ε̄j)

]
=

m

m− 1
E
[
ε(1)ε(1)′

]
− m

m− 1
E
[
ε̄ε̄′
]

=
m

m− 1
Σ− 1

m− 1
Σ = Σ.

(e) Now assume n = d. Is Σ̂ UMVU? Why or why not?

Solution:
Yes, it is. We can write the model with unknown Σ as an exponential family
with

pβ,Σ(y) = |2πΣ|−1/2 exp

{
β′X ′Σ−1y − 1

2
y′Σ−1y − β′X ′Σ−1Xβ

}

= |2πΣ|−1/2 exp

(β′X ′Σ−1
)
y − 1

2

∑
i,j

(Σ−1)ijyiyj −A(β,Σ)


= |2πΣ|−1/2 exp

(β′X ′Σ−1
)
y − 1

2

∑
i

(Σ−1)iiy
2
i −

∑
i<j

(Σ−1)ijyiyj −A(β,Σ)

 ,
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so the upper triangle of Σ−1, along with η = β′X ′Σ−1, forms a natural pa-
rameter of dimension 2n +

(
n
2

)
, and the natural parameter space includes an

open ball around Σ−1 = In and η = 0. Hence (Y ,
∑

k Y
(k)(Y (k))′) forms a

complete sufficient statistic, so

Σ̂ =
∑
k

Y (k)(Y (k))′ −m
∑
k

Y (Y )′

is a function of the complete sufficient statistic. Furthermore, it is unbiased by
part (d), so it is UMVU.
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2. Contamination model (25 points, 5 points / part).

Suppose that we observe n random variables X1, . . . , Xn ∈ [0, 1]. The ob-
servations are supposed to come from a uniform distribution, but we suspect that
our sample may be contaminated by a small proportion of observations from a
different, known distribution with Lebesgue density q(x) (q is not necessarily con-
tinuous). Assume that for some C < ∞, 0 ≤ q(x) ≤ C for all x ∈ [0, 1]. That is,
we observe

X1, . . . , Xn
i.i.d.∼ pθ(x) = 1− θ + θq(x).

Assume θ ∈ [0, b] for some b < 1.

(a) Show that the maximum likelihood estimator θ̂n is consistent for the true value
θ0 as n→∞.

Solution:
The log-likelihood for a single observation is

`1(θ;Xi) = log (1 + θ(q(Xi)− 1)) ∈ [log(1− b), log(1 + bC − b)],

which is a uniformly bounded and continuous function of θ ∈ [0, b]. As a
result, by our uniform LLN, 1

n`n(θ;X) converges uniformly in probability to
its expectation, which is−DKL(θ ‖ θ0). Further, since the model is identifiable,
the last function has a unique maximum at θ = θ0, so by our proposition from
class, the maximizer of `n(θ;X) converges to θ0 in probability.

(b) Give the asymptotic distribution of the maximum likelihood estimator as n→
∞, for θ0 ∈ (0, b). Give an explicit expression for the asymptotic variance in
terms of a definite integral (you don’t need to check any regularity conditions
for this part).

Solution:
The first two derivatives of the log-likelihood for a single observation is

˙̀
1(θ;Xi) =

q(Xi)− 1

1 + θ(q(Xi)− 1)

῭
1(θ;Xi) = −

(
q(Xi)− 1

1 + θ(q(Xi)− 1)

)2

.

The asymptotic distribution of θ̂n for an interior value of θ is
√
n
(
θ̂n − θ0

)
⇒ N

(
0, J1(θ)−1

)
,
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where

J1(θ) = −Eθ ῭
1(θ;Xi) =

∫ 1

0

(
q(Xi)− 1

1 + θ(q(Xi)− 1)

)2

(1 + θ(q(Xi)− 1)) dx

=

∫ 1

0

(q(Xi)− 1)2

1 + θ(q(Xi)− 1)
dx

(c) Find a score test for the null hypothesis that there is no contamination, against
the alternative that there is some, i.e. test H0 : θ = 0 vs. H1 : θ > 0. Give an
explicit expression for your test statistic and your cutoff, in terms of a definite
integral and a quantile of a known distribution.

Solution:
The one-sided score test rejects for large values of

1√
n

˙̀
n(0;X) =

1√
n

∑
i

(q(Xi)− 1)
H0⇒ N(0, J1(0)),

where J1(0) =
∫ 1

0 (q(x)− 1)2 dx, by the CLT. That is, we reject if∑
i

q(Xi) > n+ zα
√
nJ1(0).

(d) (*) If we expand the parameter space to [0, 1), is the MLE still consistent?

Solution:
Yes, because the log-likelihood is convex. Let θ̂r denote the restricted MLE
for the model with θ ∈ Θr = [0, b] for b = (1 + θ0)/2], for which θ0 is in
the interior of the parameter space. Then with probability approaching 1, θ̂r

is in the interior of Θr, so θ̂r < b and the log-likelihood must be decreasing
on (b, 1). In that case, θ̂ = θ̂r. Because the two estimators coincide with
probability approaching 1, we have

θ̂ − θ0 = (θ̂ − θ̂r) + (θ̂r − θ0),

and both terms are approaching 0.
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(e) (*) If θ0 = 0, give the distribution of the MLE as n→∞.

Solution:
Note that our restriction to θ ≥ 0 was not statistically essential: the log-
likelihood would still be uniformly bounded and convex, and the parameter
space compact, if we took the parameter space [a, b] for any−1/C < a < b <
1. Hence consider an expansion of the parameter space to [−1/2C, b] and let
θ̂u denote the MLE for that larger model. We have

√
nθ̂u ⇒ N(0, J1(0)−1), for J1(0) =

∫ 1

0
(q(x)− 1)2 dx.

Of course, θ̂u and θ̂ do not have the same distribution because θ̂ cannot be
negative. However, because the log-likelihood is convex, we must have θ̂ = 0
and θ̂u < 0 if and only if ˙̀

n(0;X) < 0; otherwise, θ̂ = θ̂u ≥ 0 because θ̂u

maximizes the log-likelihood over a larger parameter space. Thus, we have
almost surely

θ̂ = max{θ̂u, 0} ⇐⇒
√
nθ̂ = max{

√
nθ̂u, 0}.

By the continuous mapping theorem, we have
√
nJ1(0)θ̂ ⇒ max{0, Z},

where Z ∼ N(0, 1).
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3. Two-by-two count table (25 points, 5 points / part).

Some useful facts for this problem:

• For θ > 0, the Poisson density for X ∼ Pois(θ) is θxe−θ

x! on x = 0, 1, . . ..
The mean and variance are both θ.

• For π1, . . . , πd ≥ 0 with
∑d

i=1 πi = 1, the multinomial density for X ∼
Multinom(n, π) is

pn,π(x) = n! ·
d∏
i=1

πxii
xi!

,

on x ∈ {0, . . . , n}d with
∑

i xi = n.

• Suppose Xi ∼ Pois(θi) with θi > 0, independently for i = 1, . . . , d, and let
X+ =

∑d
i=1Xi and θ+ =

∑d
i=1 θi. Then, conditional on X+ = n,

(X1, . . . , Xd) ∼ Multinom(n, (θ1, . . . , θd)/θ+)

Assume that Xij ∼ Pois(λij), independently for i, j ∈ {0, 1}. We will con-
sider the model with λij = λ0ρ

i+j , for λ0, ρ > 0. Except when otherwise speci-
fied, assume both parameters are unknown.

(a) Give a complete sufficient statistic for the model and show it is complete.

Solution:
Let η0 = log λ0 and η1 = log ρ. Then the density is

p(x) =

1∏
i,j=0

(λ0ρ
i+j)xije−λ0ρ

i+j

xij !

=
1∏

i,j=0

exp
{

(η0 + (i+ j)η1)xij − eη0+(i+j)η1
} 1

xij !

= exp {η0(x00 + x01 + x10 + x11) + η1(x01 + x10 + x11)−A(η0, η1)}
1∏

i,j=0

1

xij !
,

and the natural parameters can range anywhere in R2. As a result, the family
is full-rank and the sufficient statistic

T (X) = (X00 +X10 +X01 +X11, X10 +X01 + 2X11)

is complete.
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(b) Assume (for this part only) that λ0 is known, but ρ is unknown. Suggest a
UMP test of H0 : ρ = ρ0 vs. H1 : ρ > ρ0. You do not need to give an
explicit cutoff for your test but give an explicit formula for the test statistic,
explain how you would find the cutoff, and explain why your test is UMP.

Solution:
If λ0 is known then η0 is known and η1 is the only natural parameter, with
corresponding sufficient statistic T2(X) = X10 + X01 + 2X11. As a result,
the UMP test rejects when T2(X) is large. To calculate the cutoff for the test,
we could simulate the data set many times under the simple null hypothesis
θij = λ0ρ

i+j
0 for all i, j. If we need to we can also randomize at the boundary

to make the type I error exactly α.

(c) Assuming again that both parameters are unknown, suggest a UMPU test of
H0 : ρ = 1 against H1 : ρ > 1. You do not need to give an explicit
cutoff for your test but explain how you would calculate it. If the data are
X00 = X01 = 0 and X10 = X11 = 1, calculate the (conservative, non-
randomized) p-value for your test.

Solution:
In this case we are testing the null hypothesis H0 : η1 = 0 against the alterna-
tive hypothesis H1 : η1 > 0. On the null, T1(X) = X00 +X10 +X01 +X11

is complete sufficient, so we should condition on it and reject for large values
of T2(X).

For this particular data set, T1(X) = 2 so we observe a Multinom(2, 14/4)
distribution under the null, conditional on T1(X) = 2. Our test statistic is
T2(X) = 3. The largest value we could have observed is 4, if X11 = 2, which
would happen with probability (1/4)2 = 1/16. The second largest value we
could have observed is 3, which can happen two ways: ifX01 = X11 = 1, or if
X10 = X11 = 1; both of these events occur with probability 2 · (1/4)2 = 1/8.
As a result, the p-value is

Pη1=0 (T2(X) ≥ 3 | T1(X) = 2) =
1

8
+

1

8
+

1

16
=

5

16
.

(d) For the same data set,X00 = X01 = 0 andX10 = X11 = 1, find the maximum
likelihood estimators for λ0 and ρ. Give your answers as explicit numbers.

Solution:
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The MLE solves

Eλ0,ρT1(X) = λ0(1 + 2ρ+ ρ2) = 2

Eλ0,ρT2(X) = λ0(2ρ+ 2ρ2) = 3

Dividing the second equation by the first gives

2ρ̂/(1 + ρ̂) = 3/2⇒ ρ̂ = 3,

and plugging into the first equation gives λ̂0 = 1/8.

(e) (*) Now suppose we consider a relaxed model λij = f(i+ j), for any strictly
positive real-valued function f on {0, 1, 2}. This includes our previous para-
metric model as a special case since we could have f(i + j) = λ0ρ

i+j . Does
there exist a UMPU test of the null hypothesis that our previous model was
correctly specified, against the alternative that it was misspecified but the re-
laxed model is correct? Explain why or why not. (If you say yes you only need
to give enough details to establish that such a test exists).

Solution:
If ζk = log f(k) for k = 0, 1, 2, then this model is also an exponential family
with density

p(x) =
1∏

i,j=0

exp
{
ζijxij − eζij

} 1

xij !

= exp {ζ0x00 + ζ1(x01 + x10) + ζ2x11 −A(ζ)}
1∏

i,j=0

1

xij !
.

In terms of this parameterization, the null hypothesis is that ζ2− ζ1 = ζ1− ζ0,
i.e.

H0 : ζ2 − 2ζ1 + ζ0 = 0, vs. H1 : ζ2 − 2ζ1 + ζ0 6= 0

Since this hypothesis sets a specific linear combination of the natural param-
eters to 0, and because the natural parameter space is all of R3, after repa-
rameterizing the model we will simply have a two-sided test that a natural
parameter of an exponential family is zero, so there will be a UMPU test given
by our usual recipe.
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4. Change point problem (25 points, 5 points / part).

Some useful facts for this problem:

• The Beta distribution Beta(α, β) with parameters α, β > 0 has density

xα−1(1− x)β−1

B(α, β)
, where B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

with respect to the Lebesgue measure on (0, 1). Its mean and variance are

Eα,β[X] =
α

α+ β
, Varα,β(X) =

αβ

(α+ β)2(α+ β + 1)
.

• The negative binomial distribution NB(m, θ) with parametersm ∈ {1, 2, . . .}, θ ∈
(0, 1) has probability mass function

pm,θ(x) =

(
x+m− 1

x

)
θx(1− θ)m, for x ∈ {0, 1, 2, . . .}.

Its mean and variance are

Em,θ[X] =
mθ

1− θ
, Varmθ(X) =

mθ

(1− θ)2
.

Assume we observe independent random variables Xi ∼ NB(m, θi) for i =
1, . . . , n. Assume also that the θi values are constant except at some integer k ∈
{1, . . . , n− 1} where they change. That is,

θi =

{
γ0 if i ≤ k
γ1 if i > k

,

for γ0, γ1 ∈ (0, 1).
Until otherwise specified, assume k is known. Throughout the problem, we

will assume m is known.

(a) Calculate the maximum likelihood estimator for γ0 and find its asymptotic
distribution if k, n→∞. You do not need to check regularity conditions.

Solution:
Up to terms that do not depend on γ0 or γ1, the log-likelihood is

`(γ0, γ1;X) =
∑
i≤k

(Xi log γ0 +m log(1− γ0)) +
∑
i>k

(Xi log γ1 +m log(1− γ1)) .

∂

∂γ0
`(γ0, γ1) =

1

γ0

∑
i

Xi −
km

1− γ0
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Solving for γ̂0 to zero the derivative, we get

γ̂0 =

∑
i≤kXi

km+
∑

i≤kXi
=

X
(0)

m+X
(0)
, where X(0)

=
1

k

∑
i≤k

Xi.

Note that the MLE depends only on X1, . . . , Xk, so we can ignore the other
Xi values; the problem is identical to what we would get if we only observed
X1, . . . , Xk

i.i.d.∼ NB(m, γ0). In that model, the Fisher information is

J1(γ0) = Varγ0(X1/γ0) =
m

γ0(1− γ0)2
.

As a result, we have

√
k (γ̂0 − γ0)⇒ N

(
0, J1(γ0)−1

)
= N

(
0,
γ0(1− γ0)2

m

)
.

(b) Next assume we introduce a prior distribution that γ0, γ1
i.i.d.∼ Beta(α, β). Give

the posterior distribution for (γ0, γ1) given X1, . . . , Xn, and give the Bayes
estimator for squared error loss.

Solution:
Ignoring factors that do not depend on γ0 and γ1, we have

p(γ0, γ1 | X) ∝ γα−1
0 (1− γ0)β−1 ·

∏
i≤k

γXi0 (1− γ0)m · γα−1
1 (1− γ1)β−1 ·

∏
i>k

γXi1 (1− γ1)m

= γ
α+

∑
i≤kXi−1

0 (1− γ0)β+km−1 · γα+
∑
i>kXi−1

1 (1− γ1)β+(n−k)m−1

∝ Beta

α+
∑
i≤k

Xi, β + km

× Beta

α+
∑
i≤k

Xi, β + (n− k)m


where the last expression is a product distribution over (γ0, γ1) since they are
independent.

The Bayes estimator then is

γ̂
Bayes
0 =

α+
∑

i≤kXi

α+
∑

i≤kXi + β + km
, γ̂

Bayes
1 =

α+
∑

i>kXi

α+
∑

i>kXi + β + (n− k)m
.
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(c) (*) Find the asymptotic distribution of the Bayes estimator for γ0, holding γ0

and γ1 fixed and sending k, n→∞.

Solution:
Again the distribution only depends on X1, . . . , Xk, so we need to find the
asymptotic distribution of

γ̂
Bayes
0 =

α/k +X
(0)

(α+ β)/k +m+X
(0)
.

Let Zk = (α+ β)/k +X
(0); then

γ̂
Bayes
0 =

Zk
m+ Zk

− β/k

m+ Zk
. (1)

Let µ = EX1 = mγ0/(1− γ0); then by Slutsky’s theorem,

√
k(Zk − µ) =

√
k(X

(0) − µ) + (α+ β)/
√
k.

The first term tends to N(0, σ2) where σ2 = Var(X1) = mγ0/(1− γ0)2, and
the second tends deterministically (and therefore in probability) to 0. Hence
by Slutsky’s theorem we have

√
k(Zk−µ)⇒ N(0, σ2). By the delta method,

then, for the differentiable function f(z) = z/(m+ z), we have
√
k (f(Zk)− f(µ))⇒ N(0, ḟ(µ)2σ2),

where ḟ(z) = m/(m+ z)2, so

ḟ(µ)2σ2 =

(
m

(m+mγ0/(1− γ0))2

)2 mγ0

(1− γ0)2
=
γ0(1− γ0)2

m
.

Finally, the second term in (1) tends to 0 as well, since the numerator tends to
zero and the denominator tends to m + µ > 0, so by Slutsky’s theorem we
have

√
k
(
γ̂

Bayes
0 − γ0

)
⇒ N

(
0,
γ0(1− γ0)2

m

)
.

(d) Next, we relax the assumption that k is known. Instead assume n = 10 and
all we know is that k ∈ {4, 5, 6}. Find a minimal sufficient statistic for the
three-parameter model with γ0, γ1 ∈ (0, 1) and k ∈ {4, 5, 6}. You do not need
to prove it is minimal, as long as you give the right answer.
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Solution:
The minimal sufficient statistic is

T (X) =

(
4∑
i=1

Xi, X5, X6,

10∑
i=7

X7

)
.

To see why, note that by standard arguments Tk(X) =
(∑

i≤kXi,
∑

i>kXi

)
is complete sufficient (and therefore minimal sufficient) for the submodels with
k fixed. That is, we must observe at least (T4, T5, T6) to be able to evaluate all
likelihood ratios between distributions in each submodel, and T (X) is equiva-
lent to (T4, T5, T6), so if T (X) is sufficient then it is also minimal.

Furthermore, we can also show by standard arguments that T (X) is complete
sufficient for the exponential family where θ1 = · · · = θ4 and θ7 = · · · = θ10,
but θ5 and θ6 are unrestricted. Since our model is a submodel of that model,
T (X) is also sufficient for our model.

(e) Continuing with the three-parameter model above, consider a Bayesian ap-
proach where we assign priors k ∼ Unif({4, 5, 6}) independently of γ0, γ1

i.i.d.∼
Beta(α, β). Give a Gibbs sampler algorithm to sample from the posterior dis-
tribution of (k, γ0, γ1).

Solution:
First, we consider how to implement a Gibbs step where k is held fixed and γ0

or γ1 is updated; this follows from part (b) where we showed

γ0 | k, γ1, X ∼ Beta

α+
∑
i≤k

Xi, β + km


γ1 | k, γ0, X ∼ Beta

(
α+

∑
i>k

Xi, β + (n− k)m

)
.

To update k, we need to first calculate

ωk(γ0, γ1, X) =
∏
i≤k

γXi0 (1− γ0)m ·
∏
i>k

γXi1 (1− γ1)m

= p(X | k, γ0, γ1) · const(X)

= p(X, γ0, γ1 | k) · const(X, γ0, γ1).
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Then, we have

p(k | X, γ0, γ1) =
p(k,X, γ0, γ1)∑6
k̃=4

p(k̃, X, γ0, γ1)
=

1
3p(X, γ0, γ1 | k)∑
k̃

1
3p(X, γ0, γ1 | k̃)

=
ωk∑
k̃ ωk̃

Thus, to update k we calculate (ω4, ω5, ω6) and sample k from a distribution
proportional to that distribution. To sum up the algorithm, we can initialize
k(0) and then take

For t = 1, . . . , T :

Draw γ
(t)
0 ∼ Beta

α+
∑

i≤k(t−1)

Xi, β + k(t−1)m


Draw γ

(t)
1 ∼ Beta

α+
∑

i>k(t−1)

Xi, β + (n− k(t−1))m


Draw k(t) ∼ q(k) ∝ ωk

(
γ

(t)
0 , γ

(t)
1 , X

)
.
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