
Student ID (NOT your name):

Final Examination: QUESTION BOOKLET

Prof. Will Fithian

Fall 2023

• Do NOT open this question booklet until you are told to do so.

• Write your Student ID number (NOT your name) at the top of this page.

• Write your solutions in this booklet.

• No electronic devices are allowed during the exam.

• Be neat! If we can’t read it, we can’t grade it.

• You can treat any results from lecture or homework as “known,” and use
them in your work without rederiving them, but do make clear what result
you’re using. You do not need to explicitly check regularity conditions for
the theorems from class that required them.

• For a multi-part problem, you may treat the results of previous parts as given
(if you don’t prove the result for part (a), you can still use it to solve part
(b)).

• I have starred some parts which I believe are the most difficult, and which I
expect most students won’t necessarily be able to solve in the time allotted.
They are generally not worth more points than the less difficult parts, so
don’t waste too much time on them until you’re happy with your answers to
the latter.

• Be careful to justify your reasoning and answers. We are primarily interested
in your understanding of concepts, so show us what you know.

• Good luck!
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1. Laplace Location Family (24 points, 4 points / part).

Some useful facts for this problem:

• The exponential distribution with scale parameter θ > 0 is called Exp(θ)
and has density

pθ(x) =
1

θ
e−x/θ, for x > 0.

The mean is θ and the variance is θ2.

• The Gamma distribution with scale parameter θ > 0 and shape parameter
k > 0 is called Gamma(k, θ) and has density

pk,θ(x) =
1

Γ(k)θk
xk−1e−x/θ, for x > 0,

where Γ(k) =
∫∞
0 tk−1e−t dt. The mean and variance are kθ and kθ2.

• A sum of k independent Exp(θ) random variables is Gamma(k, θ).

• If Z ∼ Gamma(k, θ) then aZ ∼ Gamma(k, aθ), for any a > 0.

Suppose that we observe an i.i.d. sample from the Laplace scale family with
parameter θ > 0:

X1, . . . , Xn
i.i.d.∼ Laplace(0, θ) =

1

2θ
e−|x|/θ, for x ∈ R.

Note the density is supported on the entire real line. This is not the same as the
Laplace location family that we have used as a running example in class.

(a) Show that |Xi| ∼ Exp(θ) for i = 1, . . . , n.

Solution:
For 0 ≤ a ≤ b <∞), we have

P(|Xi| ∈ [a, b]) = P(Xi ∈ [−b,−a]) + P(Xi ∈ [a, b])

=
1

2

(∫ −a
−b

1

θ
ex/θ dx+

∫ b

a

1

θ
e−x/θ dx

)
=

∫ b

a

1

θ
e−x/θ dx

= P(Y ∈ [a, b]),

where Y ∼ Exp(θ).
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(b) Find a minimal sufficient statistic for this model. Is it complete?

Solution:
The likelihood is

p(x) =

(
1

2θ

)n
exp

{
−1

θ

∑
i

|xi|

}
,

which we can recognize as an exponential family model with sufficient statistic∑
i |Xi| and natural parameter 1/θ. Because 1/θ ranges over the entire interval

(0,∞), the sufficient statistic is complete and therefore minimal.

(c) Find the maximum likelihood estimator for θ and give its asymptotic distribu-
tion.

Solution:
Let T (X) =

∑
i |Xi|. The log-likelihood is

`n(θ;X) = −n log(2θ)− 1

θ
T (X),

and its derivative is

˙̀
n(θ;X) = −n

θ
+

1

θ2
T (X) =

n

θ2
(T (X)/n− θ),

so the likelihood is maximized by setting ˙̀
n(θ̂;X) = 0, giving

θ̂ = T/n =
1

n

∑
i

|Xi|.

Moreover, we can easily see from the last expression for ˙̀
n(θ;X) that its sign

is the same as the sign of T/n− θ, so T/n is the global maximizer. The Fisher
information is therefore

Jn(θ) = Varθ(T (X)/θ2) = nθ−4Varθ(Xi) = nθ−2.

As a result, the asymptotic distribution of the MLE is
√
n(θ̂n − θ)⇒ N(0, θ2).
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(d) Show the estimator from the previous part is unbiased. Does it achieve the
Cramér-Rao Lower Bound?

Solution:
The estimator is unbiased because Eθ|Xi| = θ, since it is exponentially dis-
tributed. So T/n, which is an average of n random variables each having
expectation θ, also has expectation θ and is therefore unbiased. Its variance is
θ2/n, again because it is an average of n independent random variables each
with variance θ2. This matches the Cramér-Rao Lower Bound based on the
variance calculated above.

(e) Now, suppose that we are concerned the variance might be gradually shrink-
ing. Specifically, we are concerned that the ith random variable has parameter
θi = θ0(1 − δ)i. That is, we consider an alternative model with an additional
parameter δ ∈ [0, 1), where

Xi
ind.∼ Laplace(0, θ0(1− δ)i), for i = 1, . . . , n.

Assume (for this part only) that the value of θ0 is known.

Suppose that we want to test our original model (which has δ = 0) against
the alternative that δ > 0. Suggest a score test, giving an explicit expression
for the score statistic and a cutoff based on its asymptotic distribution. You
do not need to justify why the score statistic (calculated in the usual way and
appropriately normalized) is asymptotically Gaussian in this non-i.i.d. model;
you can just assume that it is.

Solution:
Now the log-likelihood is

`n(δ;X) =
∑
i

− log(2θ0)− i log(1− δ)− |Xi|/θ0
(1− δ)i

,

and its derivative is

˙̀
n(δ;X) =

∑
i

i

1− δ
− i|Xi|/θ0

(1− δ)i+1

The score evaluated at δ = 0 is then

˙̀
n(0;X) =

n∑
i=1

i(1− |Xi|/θ0),
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and the Fisher information at δ = 0 is

Jn(0) = Var0( ˙̀
n(δ;X)) =

n∑
i=1

i2Var(|Xi|/θ0) =
n∑
i=1

i2.

Thus, the normalized test statistic is

Z = J−1/2n
˙̀
n(0;X) =

∑n
i=1 i(1− |Xi|/θ0)
(
∑n

i=1 i
2)−1/2

⇒ N(0, 1),

and since we are doing a one-sided test we reject if it is larger than zα.

(f) (*) Now, drop the assumption that θ0 is known, so that now both θ0 and δ are
unknown. Assume we want to test the same hypothesis, H0 : δ = 0 against
H1 : δ > 0, with θ0 as a nuisance parameter. How can we modify the test
from the previous part so that it has finite-sample control of the Type I error
rate? You do not need to give an explicit cutoff, but you should give a sufficient
explanation of how you would find it without knowing the value of θ0.

Solution:
A natural idea is to condition on the value of T (X), which is a sufficient statis-
tic for the null submodel. Then, we can calculate the same statistic from the
previous part, plugging in θ̂0 = T/n for θ0:

W =

∑n
i=1 i(1− |Xi|n/T )

(
∑n

i=1 i
2)−1/2

.

Then we can reject for large values of W , which is equivalent up to an affine
transformation to rejecting for small values of

∑
i i|Xi|/T .

The statisticW may have smaller than unit variance but it doesn’t really matter
since we can just calculate its conditional distribution by Monte Carlo or other
numerical integration techniques, and reject whenW is larger than some quan-
tile. In fact we can simulate directly fron the conditional distribution of W , or
of
∑

i i|Xi|/T , by simulatingD = (|X1|, . . . , |Xn|)/T from the Dirichlet(1n)
distribution, but this is not necessary to get full credit.

Alternative solution: A natural idea is to condition on the value of T (X),
which is a sufficient statistic for the null submodel. Rejecting for large Z is
equivalent to rejecting for small values of

∑
i i|Xi|, so we can just simulate

from the conditional distribution given T (X) and reject when the statistic is
above its conditional upper α quantile. It so happens this is equivalent to the
first approach because D is independent of T , so the conditional distribution
of (|X1|, . . . , |Xn|) given T = t is just t ·D.

5



2. Multivariate normal means (20 points, 5 points / part).

Suppose that we observe two multivariate normal random vectors in Rd, for
d ≥ 3:

X(i) ind.∼ Nd(θ
(i), σ2Id), for i = 1, 2.

where θ(1), θ(2) ∈ Rd and σ2 > 0, and Id is the d× d identity matrix.
For all parts below, if you refer to quantiles of a t, χ2, or F distribution, you

will need to give the relevant degrees of freedom in order to receive full credit.

(a) Assume (for this part only) that σ2 is known but θ(1), θ(2) are unknown, and
suggest a test of the hypothesis H0 : θ(1) = θ(2) (that θ(1)j = θ

(2)
j for every

j = 1, . . . , d) against the hypothesis that θ(1) 6= θ(2) (that θ(1)j 6= θ
(2)
j for at

least one j = 1, . . . , d). Give your test statistic and a rejection cutoff in terms
of a quantile of a χ2 distribution.

Solution:
We can define the variable Y = X(2)−X(1) ∼ Nd(θ

(2)
j − θ

(1)
j , 2σ2Id). Under

the null hypothesis, 1
2σ2 ‖Y ‖2 ∼ χ2

d, so we can reject when this statistic is
above the upper-α quantile of that distribution.

(b) Now drop the assumption that σ2 is known (i.e. now it is unknown), and
assume (for this and the next part only) that θ(2)j = θ

(1)
j + δ, for some δ ∈ R

(i.e. every coordinate is shifted by the same amount δ), but apart from this
assumption, both θ(1) and θ(2) are unknown. Propose a finite-sample test of
H0 : δ = 0 against the two-sided alternative H1 : δ 6= 0. Give a test statistic
and cutoffs in terms of a quantile of a specific distribution.

Note: You do not need to prove any optimality properties for your test, but you
won’t receive full credit if you trivialize the problem by giving an inefficient
test, even if the test is valid in the Type I error sense.

Solution:
Working with the same Y , we have Y ∼ Nd(δ1d, 2σ

2Id). This is just the
setup for a one-sample t-test, so we reject if |Y |√

S2/d
is above the upper-α/2

quantile of a td−1 distribution, where Y = 1
d

∑
j Yj ∼ N(δ, 2σ2/d) and S2 =

1
d−1

∑
j(Yj − Y )2 ∼ 2σ2

d−1χ
2
d−1, independently.

(c) Under the same assumptions as in part (b), propose a confidence interval for
δ. If you didn’t solve part (b), or if you are not confident in your answer,
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you may assume that there is a valid test statistic from part (b) of the form
T (X(1), X(2)), and (non-data-dependent) cutoff values c1(α) and c2(α) (so
the test rejects if T < c1 or T > c2), and give your answer in terms of these.

Solution:
If we want to test the point null δ = δ0, we can just shift the problem to get
Y − δ01d ∼ Nd((δ − δ0)1d, 2σ2Id). So we want to invert the test that rejects
when |Y−δ0|√

S2/d
> td−1(α/2). In other words, our interval should be

Y ±
√
S2/d · td−1(α/2).

(d) (*) Now, drop the assumption about δ from the previous parts, so θ(1) and
θ(2) are again completely unknown. And now assume (for this part only) that
σ2 = 1. Also, suppose that we believe θ(1) ≈ θ(2) as vectors in Rd, but we do
not have any other strong priors about it. Suggest an estimator that will have
MSE less than 2d for all values of θ(1), θ(2), but which will have MSE d + 2
whenever θ(1) = θ(2).

Note: You do not need to prove that your estimator has these properties, it is
sufficient to give a correct functional form for the estimator.

Solution:
Let Z = Y/

√
2 so it has an identity covariance. We want to use a James-Stein

estimator for the mean of Z (which will be 0 if we’re lucky) and the MLE for
the mean ofW = (X(1)+X(2))/

√
2 ∼ Nd(θ

(1)+θ(2), Id). Note Z andW are
independent, which we can verify by noting that they represent two orthogonal
projections of (X(1), X(2)). Let µ denote the mean of Z, and ν the mean of
W . Then ν̂ = W and

µ̂ =

(
1− d− 2

‖Z‖2

)
Z =

(
1− 2d− 4

‖X(2) −X(1)‖2

)
X(2) −X(1)

√
2

.

Since θ(2) = (µ+ ν)/
√

2 and θ(1) = (−µ+ ν)/
√

2, we have

θ̂(2) =
µ̂+W√

2
=
X(1) +X(2)

2
+

(
1− 2d− 4

‖X(2) −X(1)‖2

)
X(2) −X(1)

2
,

and

θ̂(1) =
−µ̂+W√

2
=
X(1) +X(2)

2
−
(

1− 2d− 4

‖X(2) −X(1)‖2

)
X(2) −X(1)

2
,
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The MSE for estimating (θ(1), θ(2)) is the sum of the MSEs for the two esti-
mators µ̂ and ν̂. The second has MSE d and the first has MSE strictly less than
d, equaling 2 if µ = 0.
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3. Nonparametric two-sample problem (20 points, 5 points / part).

Some useful facts you may assume are true for this problem:

• In the one-sample model with X1, . . . , Xn
i.i.d.∼ P , with the Xi observations

taking values in R and no further assumptions on the distribution P , the order
statistics

S(X) = (X(1), . . . , X(n))

are complete sufficient.

• If Zn ⇒ Z and Wn ⇒ W , and Zn is independent of Wn for every n, then
(Zn,Wn)⇒ (Z,W ) where Z is independent of W .

Assume we have a non-parametric two-sample problem of the form

X1, . . . , Xn
i.i.d.∼ P, and Y1, . . . , Yn

i.i.d.∼ Q,

independently, where all Xi and Yi take values in R. You may assume, without
proving, that (S(X), S(Y )) is complete sufficient for the full model.

(a) Define the estimand g(P,Q) = PX∼P,Y∼Q(X > Y ), i.e. the probability that
an observation from P is larger than an independent observation from Q. Find
the UMVU estimator for g(P,Q) and explain why it is UMVU.

Solution:
We have an unbiased estimator in 1{X1 > Y1}, so all we need to do is Rao-
Blackwellize it conditional on S(X) and S(Y ). Conditional on these statistics,
X1 and Y1 are independently uniform draws from S(X) and S(Y ), so the
UMVU estimator is

1

n2

n∑
i,j=1

1{Xi > Yj}.

Common errors: Note that 1
n

∑
i 1{Xi > Yi} would not be correct; it is

unbiased but cannot be calculated from the complete sufficient statistic. And
1
n

∑
i 1{X(i) > Y(i)} is not even unbiased. However, the estimator 1

n2

∑n
i,j=1 1{X(i) >

Y(j)} is correct; students who gave this answer or another equivalent answer
got full credit as long as each of the n2 pairs ofX and Y values are represented
once.

(b) Define µ = EPX , ν = EQY , σ2 = VarP (X), and τ2 = VarQ(Y ). Show
that T (X,Y ) = (X/Y )2 is a consistent estimator for θ = (µ/ν)2 as n→∞,
assuming ν > 0 and σ2, τ2 ∈ (0,∞).
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Solution:
This follows from the continuous mapping theorem after observing that X →
µ and Y → ν in probability, by the law of large numbers, and the function
f(x, y) = (x/y)2 is continuous everywhere except where y = 0.

Common “error”: The function f is not continuous everywhere. If you said
or implied in your answer that the function f was continuous, without the
caveat that the denominator must be nonzero (i.e. that ν > 0), I deducted 1
point out of 5. I made exceptions in rare cases where it seemed that something
else in the answer made implicit reference to ν > 0 being necessary.

(c) Give the asymptotic distribution of T (X,Y ) as n→∞, appropriately normal-
ized so that the error has a nondegenerate distribution, and justify your answer.
Your answer should be given as a distribution whose parameters are explicit
functions of µ, ν, τ2, σ2, and θ.

Solution:
For this, we have

√
n(Xn − µ) ⇒ N(0, σ2) and

√
n(Y n − ν) ⇒ N(0, τ2),

so we can apply the delta method to
√
n
((Xn

Y n

)
−
(
µ
ν

))
⇒ N2(0, D) for D =(

σ2 0
0 τ2

)
. The function is f(x, y) = (x/y)2, whose gradient (for y 6= 0) is

∇f(x, y) = (2x/y2,−2x2/y3). As a result we have
√
n(T − θ)⇒ N(0, ω2),

where

ω2 = ∇f(µ, ν)′D∇f(µ, ν) = 4

(
µ2σ2

ν4
+
µ4τ2

ν6

)
=

4

ν2
(θσ2 + θ2τ2).

Grading note: If you missed that we need ν > 0 in (b) I didn’t take points off
again. If you didn’t miss it in (b), then I assumed you knew it in (c). So this
detail played no role in grading this part.

(d) (*) If µ = ν = 0, give the asymptotic distribution of T (X,Y ) as n → ∞,
normalized appropriately if necessary. Justify your answer.

Solution:
In this case we have Z =

√
n
(Xn

Y n

)
⇒ N2(0, D). By the continuous mapping

theorem, then, T = (Z1/Z2)
2 ⇒ σ2

τ2
F1,1.
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Note: This part was graded more leniently than part (b) since I essentially
gave full marks to anyone who got to the right answer, but there is a slight
subtlety about applying the continuous mapping theorem here, which is worth
mentioning. Why shouldn’t we care about the discontinuity point anymore?
The condition for the theorem can be relaxed to say just that the set of dis-
continuity points of the function f has measure zero in the limiting probability
distribution (this would not be true in part (b) where we were appealing to the
fact that Xn → ν in probability. If you noticed this issue (and I don’t think
anyone mentioned it for this part) and wanted to show convergence more di-
rectly, you could replace T with a truncated version TB(X,Y ) = min(T,B),
since f(x, y) = min((x/y)2, B) is continuous. Then we would have TB ⇒
min(F1,1, B) for everyB, which means the cdf of T is converging everywhere
to the (continuous) F1,1 cdf. But again, this level of detail was not necessary
for full marks.
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4. Bayes estimation for Uniform Scale family (20 points, 5 points / part).

Some useful facts for this problem:

• The Unif[0, θ] distribution for θ > 0 has density

pθ(x) =
1

θ
, for x ∈ [0, θ].

Its mean and variance are θ/2 and θ2/12.

• The Pareto distribution with minimum value x0 > 0 and shape parameter
α > 0 is called Pareto(x0, α) and has density

px0,α(x) =
αxα0
xα+1

, for x ≥ x0.

Its mean is αx0
α−1 if α > 1 and is infinite otherwise, and its variance is

θ20α
(α−1)2(α−2) if α > 2 and infinite otherwise.

Assume that we observe a uniformly distributed random variable

X ∼ Unif[0, θ].

Assume for parts (a) - (b) below that the relevant loss is the standard squared
error loss L(θ̂, θ) = (θ̂ − θ)2.

(a) Show that θ ∼ Pareto(θ0, α) is conjugate to this family and find the posterior
distribution and Bayes estimator for θ.

Solution:
The prior is λ(θ) ∝θ 1

θα+1 1{θ ≥ θ0}, and the likelihood is pθ(x) = 1
θ1{x ≤

θ}, so the posterior distribution is

λ(θ | x) ∝θ
1

θα+2
1{θ ≥ θ0}1{θ ≥ x}

=
1

θα+2
1{θ ≥ max(x, θ0)}

∝θ Pareto(max(x, θ0), α+ 1).

As a result the posterior mean (which is the Bayes estimator for squared error
loss) is θ̂ = 1+α

α max(θ0, X) = (1 + 1/α) max(θ0, X).

Common mistake: The posterior is not Pareto(θ0, α+1) (if it were, it wouldn’t
depend on the data). A good number of students forgot to mind the indicators.
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I think people made that mistake because we have often been lackadaisical in
class and on homework about keeping explicit track of the support of distribu-
tions. It is usually fine not to worry about the support, since there is usually a
base measure for the family that determines the support for all densities in the
problem, and so it goes without saying that all densities we work with for that
problem have the same support. But for both the uniform and Pareto families
in this problem, the support depends on the parameter so we have to keep track
of it if we want to get the calculations right.

(b) Next consider the prior λ(θ) = 2θ · 1{0 ≤ θ ≤ 1}. Find the Bayes estimator
and Bayes risk.

Solution:
The posterior is

λ(θ | x) ∝θ 2θ · 1{θ ≤ 1} · 1

θ
1{x ≤ θ} = 2 · 1{x ≤ θ ≤ 1} ∝θ Unif[x, 1].

The Bayes estimator is therefore (1 +X)/2, and the MSE is

MSE(θ) =

(
Eθ
[

1 +X

2

]
− θ
)2

+ Varθ

(
1 +X

2

)
=

(
1

2
− 3θ

4

)2

+ θ2/48

=

(
9

16
+

1

48

)
θ2 − 3

4
θ +

1

4

=
7

12
θ2 − 3

4
θ +

1

4
,

and the Bayes risk is∫ 1

0
2θ

(
7

12
θ2 − 3

4
θ +

1

4

)
dθ =

∫ 1

0

(
7

6
θ3 − 3

2
θ2 +

1

2
θ

)
dθ

=
7

24
− 1

2
+

1

4
=

1

24
.

Common mistake: Many of the same people who got part (a) wrong got this
wrong too, giving Unif[0, 1] as the posterior. I felt bad taking points off again
for a similar mistake so I gave partial credit, but not too much; it is a failure of
statistical intuition to think that the data is not going to determine the posterior
in this problem.
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(c) (*) Is the minimax risk for this problem finite? Show that it is infinite or find
an upper bound on the minimax risk.

(Hint: It might help to consider a subproblem where θ is bounded above by
B > 0.)

Solution:
Consider the prior 2θ

B 1{0 ≤ θ ≤ B}. We can repeat essentially the same
calculation as in (b) to get that the estimator is (X +B)/2.

But if Y = X/B and ζ = θ/B, then we have ζ ∼ 2ζ · 1{ζ < 1}, and
Y | ζ ∼ Unif[0, ζ], and the Bayes risk is

E[((X +B)/2− θ)2] = B2E[((Y + 1)/2− ζ)2] = B2/24.

Because any Bayes risk is a lower bound for the minimax risk, the minimax
risk must be infinite.

(d) Now consider instead the squared relative error loss L(θ̂, θ) =
(
θ̂−θ
θ

)2
. Find

the best linear estimator; i.e. if we take our estimator as aX , for a > 0, find
the a that minimizes the corresponding risk and give the risk as a function of
θ.

Solution:
The risk is

R(θ) =
1

θ2
E
[
(aX − θ)2

]
=

1

θ2

[
(aEθX − θ)2 + a2Varθ(X)

]
= (a/2− 1)2 + a2/12

= (1/4 + 1/12)a2 − a+ 1

= a2/3− a+ 1.

Differentiating, we find the minimum is at a = 3/2, giving constant risk of
1/4.
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