
Student ID (NOT your name):

Final Examination: QUESTION BOOKLET

Prof. Will Fithian

Fall 2024

• Do NOT open this question booklet until you are told to do so.

• Write your Student ID number (NOT your name) at the top of this page.

• Write your solutions in this booklet.

• No electronic devices are allowed during the exam.

• Be neat! If we can’t read it, we can’t grade it.

• You can treat any results from lecture or homework as “known,” and use
them in your work without rederiving them, but do make clear what result
you’re using. You do not need to explicitly check regularity conditions for
the theorems from class that required them.

• For a multi-part problem, you may treat the results of previous parts as given
(if you don’t prove the result for part (a), you can still use it to solve part
(b)).

• I have starred some parts which I believe are the most difficult, and which I
expect most students won’t necessarily be able to solve in the time allotted.
They are generally not worth more points than the less difficult parts, so
don’t waste too much time on them until you’re happy with your answers to
the latter.

• Be careful to justify your reasoning and answers. We are primarily interested
in your understanding of concepts, so show us what you know.

Good luck!
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1. Six Gaussians (20 points, 5 points / part).

Some useful facts for this problem:

• Recall that the Gaussian density function for Z ∼ N(θ, σ2) is

1√
2πσ2

exp

{
−(x− θ)2

2σ2

}
Assume that we observe Gaussian random variables X1, . . . , X6 where Xi ∼

N(θi, σ
2), independently. Different parts of the question will assume σ2 > 0 is

known or unknown.

(a) Assume it is known that σ2 = 1. Suppose we want to test the null hypothesis:

H0 : θ2 = θ3 and θ4 = θ5 = θ6,

against the alternative that θ is any other vector in R6. Suggest a χ2 test statistic
and specify the degrees of freedom.

Solution:

The null is that θ lies in a 3-dimensional linear subspace Θ. The appropriate
χ2 statistic is ‖Π⊥ΘX‖2, based on the projection of X onto the 3-dimensional
orthogonal complement. We can calculate this by computing the residual sum
of squares for the projection onto the model space:

RSS = ‖X − (X1, X23, X23, X456, X456, X456)‖2.

Alternatively, we can define the sample variances

S2
23 =

3∑
i=2

(Xi −X23)2 H0∼ χ2
1,

and

S2
456 =

1

2

6∑
i=4

(Xi −X456)2 H0∼ 1

2
χ2

2,

which are independent. Then RSS = S2
23 + 2S2

456, which is a χ2
3 random

variable under H0.

Note: a common mistake on the exam was to claim thatX5−X4 andX6−X5

are independent. Their correlation is 0.5.
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(b) Continue to assume σ2 = 1 and consider the following estimator for θ:

δ(X) = γ ·
(
X1, X23, X23, X456, X456, X456

)
,

where γ ∈ [0, 1] is a fixed constant, X23 = X2+X3
2 , and X456 = X4+X5+X6

3 .
Give an unbiased estimator for the MSE of δ(X).

Solution:

We have δ(X) = X − h(X), where

h1(X) = (1− γ)X1

h2(X) = X2 − γX23 = (1− γ

2
)X2 −

γ

2
X3

h4(X) = X4 − γX456 = (1− γ

3
)X4 −

γ

3
(X5 +X6),

and the other h values are defined similarly.

Stein’s unbiased risk estimator is

R̂ = 6 + ‖h(X)‖2 − 2
6∑
i=1

∂

∂Xi
hi(X)

= 6 + ‖X − δ(X)‖2 − 2(1− γ + 2(1− γ/2) + 3(1− γ/3))

= 6(γ − 1) + ‖X − δ(X)‖2.

The previous expression was enough to get full credit, but we can obtain a more
explicit expression using orthogonality of δ(X) = γΠΘX andX−δ(X)/γ =
Π⊥ΘX , leading to

R̂ = 6(γ − 1) + ‖δ(X)−ΠΘX‖2 + ‖Π⊥ΘX‖2

= 6(γ − 1) + (γ − 1)2(X2
1 + 2X

2
23 + 3X

2
456) + RSS.

(c) Now, assume that σ2 is unknown, but it is known that θ2 = θ3 and θ4 = θ5 =
θ6. That is, what in part (a) was a null hypothesis to be tested is now a modeling
assumption. Suggest a confidence interval based on the Student’s t-distribution
for the parameter g(θ) = θ4 − θ3. Specify the degrees of freedom.
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Solution:
Let λ = g(θ). The unbiased estimator for λ is

λ̂ = X23 −X456 ∼ N
(
λ,
σ2

2
+
σ2

3

)
= N(λ, 5σ2/6).

Meanwhile, our RSS from before is now a σ2χ2
3 random variable, so to test the

point null H0 : λ = λ0, we can use the t-statistic

T =
(λ̂− λ0)/

√
5σ2/6√

RSS/3σ2
=

λ̂− λ0√
5RSS/18

λ=λ0∼ t3.

Inverting this test leads to the symmetric confidence interval

λ̂± t3(α/2) ·
√

5RSS/18.

(d) Under the same assumptions as part (b), now suppose that we want to test the
null hypothesis H0 : θ1 = θ2 = · · · = θ6 against the alternative that θ is any
other vector in R6 with θ2 = θ3 and θ4 = θ5 = θ6. Suggest an F test statistic
and specify the degrees of freedom.

Solution:

Now in addition to the RSS from the model space Θ we have the residual sum
of squares from the null model, which is RSS0 =

∑6
i=1(Xi − X)2, where

X = 1
6

∑
iXi. The null model has d0 = 1 degree of freedom and the full

model has d = 3 degrees of freedom. Hence d − d0 = 2 and n − d = 3, and
the F statistic is

(RSS0 − RSS)/2

RSS/3
H0∼ F2,3.
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2. Inverse gamma prior (20 points, 5 points / part). Some useful facts for this
problem:

• A χ2
d random variable has mean d and variance 2d.

• If Y is a Gamma(α, β) random variable (in its “rate parameterization”) then
it has density

βα

Γ(α)
yα−1 exp{−βy},

on (0,∞). Y has mean α/β and variance α/β2. This distribution is defined
for α, β > 0.

• The inverse-gamma distribution (denoted IG(α, β)) is the distribution of
W = 1/Y where Y ∼ Gamma(α, β). Then W ∈ (0,∞) has the density

βα

Γ(α)
w−α−1 exp{−β/w}.

Note that β is a scale parameter for W . W has mean β
α−1 provided α >

1, and variance β−1
(α−1)2(α−2)

provided α > 2. This distribution is likewise
defined for α, β > 0.

• Define the squared relative error loss function

Lrel(d, θ) =

(
d− θ
θ

)2

=

(
d

θ
− 1

)2

,

and define the corresponding risk functionRrel(δ(·), θ) = Eθ[Lrel(δ(X), θ)].

Consider the Bayesian model with

θ ∼ IG(α, β),

X1, . . . , Xn | θ
i.i.d.∼ N(0, θ)

Note that the variance is θ, not θ2, and assume n ≥ 2.

(a) Find the posterior distribution of θ given X = (X1, . . . , Xn) and the Bayes
estimator for θ under the standard (not relative) squared error loss.

Solution:
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The prior times the likelihood, ignoring factors that do not depend on θ, is

p(θ | X) ∝θ θ−α−1 exp{−β/θ} · (2πθ)−n/2 exp

{
−
∑

iX
2
i

2θ

}
∝θ θ−(α+n/2)−1 exp

{
−β + ‖X‖2/2

θ

}
∝θ IG(α+ n/2, β + ‖X‖2/2).

The posterior expectation, then, is

E [θ | X] =
β + ‖X‖2/2
α+ n/2− 1

=
2β + ‖X‖2

2(α− 1) + n
.

(b) Find the Bayes estimator for θ under the squared relative error loss Lrel.

Solution:
Let α̃ = α+ n/2 and β̃ = β + ‖X‖2/2.

We want to solve

min
d

E

[(
d

θ
− 1

)2

| X

]
,

over d ∈ (0,∞). Expanding the square, we get

min
d
d2E[θ−2 | X]− 2dE[θ−1 | X] + 1,

leading to the solution

d∗ =
E[θ−1 | X]

E[θ−2 | X]
=

E[θ−1 | X]

E[θ−1 | X]2 + Var(θ−1 | X)
.

Plugging in α̃/β̃ for the expectation and α̃/β̃2 for the variance, we obtain

δ(X) =
β̃

α̃+ 1
=

2β + ‖X‖2

2(α+ 1) + n
.

(c) (*) For the estimator in part (b), find the risk function Rrel(θ; δ(X)) as a func-
tion of θ and show that the Bayes risk is 2

n+2(α+1) .

Solution:
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The risk of an estimator δ(X) = a(‖X‖2 + b), for any constants a, b, is

Eθ

[(
δ(X)

θ
− 1

)2
]

= Eθ
[
δ(X)

θ
− 1

]2

+ Varθ(δ(X)/θ)

= (a(n+ b/θ)− 1)2 + 2a2n,

using the fact that Y = ‖X‖2/θ ∼ χ2
n has mean n and variance 2n.

Plugging in a = 1
2(α+1)+n and b = 2β, we obtain

R(θ) =
4(β/θ − α− 1)2 + 2n

(2(α+ 1) + n)2

To obtain the Bayes risk, note that in our IG prior β/θ has mean and variance
equal to α. Hence,

E
[
(β/θ − α− 1)2

]
= 1 + α,

and so the Bayes risk is

ER(θ) =
4(α+ 1) + 2n

(2(α+ 1) + n)2
=

2

n+ 2(α+ 1)
.

(d) For the relative squared error risk, find a linear estimator of the form δ(X) =
a
∑n

i=1X
2
i that is minimax, and prove it is minimax.

Solution:

Plugging in b = 0 to our formula from the previous part, we have

Eθ

[(
a‖X‖2

θ
− 1

)2
]

= (an− 1)2 + 2a2n,

which is constant in θ and optimized at a∗ = 1
n+2 giving optimal risk 2

n+2 for
the estimator ‖X‖2/(n+ 2).

Moreover, the Bayes risk from the previous part gives a lower bound of 2
n+2(α+1)

on the minimax risk, for every α > 0. Taking α → 0 we obtain a least-
favorable prior sequence, showing that 2

n+2 is indeed the minimax risk and
‖X‖2/(n+ 2) is indeed minimax.
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3. Social network model (20 points, 5 points / part).

Some useful facts you may assume are true for this problem:

• An undirected graph is a set of vertices V and a set of edges E connecting
pairs of vertices. Assume (without loss of generality) that the edges are
labeled 1 to m (so V = {1, . . . ,m}) and each edge is represented by a pair
of vertices (i, j) with 1 ≤ i < j ≤ m; that is, vertices i and j are connected
to each other if (i, j) ∈ E, in which case we say the edge (i, j) is present.

• The binomial distribution Binom(n, θ) with parameter θ ∈ (0, 1) has proba-
bility mass function

pθ(x) = Pθ(X = x) =

(
n

x

)
θx(1− θ)n−x, for x ∈ {0, 1, . . . , n}.

Its mean and variance are

Eθ[X] = nθ, Varθ(X) = nθ(1− θ).

The binomial distribution arises when a coin lands heads with probability θ,
and we flip it n times. Then, the number of heads we see is a Binom(n, θ)
random variable.

We will consider a model where the set V of vertices is fixed but the set E of
edges is random, governed by parameters that we are interested in. Define Xi,j ∈
{0, 1} as a binary indicator that (i, j) is present. Assume that for each pair (i, j),
Xi,j ∼ Bern(πi,j), for πi,j ∈ (0, 1), and the Xi,j values are independent.

Assume this model represents a social network, where each vertex represents
an individual student in a school and an edge represents a friendship relation be-
tween two students; students i and j are friends if (i, j) ∈ E.

In addition, assume each student belongs to a group g(i) ∈ {1, . . . ,K}. Stu-
dents in the same group may have a higher chance of forming friendships than
students in different groups. We assume that it is known which group each student
belongs to.

(a) Suppose that πi,j = α+ β1{g(i) = g(j)}, for unknown parameters α ∈ [0, 1]
and β ∈ [0, 1− α] (note β is non-negative). Let

Tw =
∑

i<j: g(i)=g(j)

Xi,j ,
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the total number of friendships between pairs of students within the same
group, and let

Tb =
∑

i<j: g(i)6=g(j)

Xi,j ,

the total number of friendships between pairs of students in different groups.
Show that (Tw, Tb) is a complete sufficient statistic for this model.

Solution:
The likelihood is∏
i<j: g(i)6=g(j)

αXi,j (1− α)1−Xi,j ·
∏

i<j: g(i)=g(j)

(α+ β)Xi,j (1− α− β)1−Xi,j ,

which simplifies into(
α

1− α

)Tb
(1− α)Nb ·

(
α+ β

1− α− β

)Tw
(1− α− β)Nw ,

where Nb = |{i < j : g(i) 6= g(j)}| and Nw = |{i < j : g(i) = g(j)}|
are the total number of possible edges between and within groups. The natural
parameter η = (log α

1−α , log α+β
1−α−β ) can take values in an open set, so the

family is full rank and (Tw, Tb) is complete sufficient.

(b) Find the maximum likelihood estimator α̂, β̂.

Solution:

Start by making the sufficiency reduction to Tw ∼ Binom(Nw, α + β) and
Tb ∼ Binom(Nb, α), independently. We want to maximize the concave log-
likelihood subject to the constraint β ≥ 0.

The unconstrained solution sets the expectations of Tw and Tb equal to their
realized values, giving α̂ = Tb/Nb and α̂ + β̂ = Tw/Nw, so β̂ = Tw/Nw −
Tb/Nb.

If the unconstrained solution satisfies the constraint, it is also the constrained
solution. Otherwise the constrained solution is at the boundary β = 0, corre-
sponding to the one-parameter model where all edges have probability α. That
model has MLE α̂ = (Tb + Tw)/(Nb +Nw) (and β̂ = 0).

(c) (*) Now (for this part only) assume α ∈ (0, 1) is known. Does there exist an
admissible unbiased estimator for β, for the squared error loss?
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Solution:

There is no admissible unbiased estimator. If α is known then Tb is ancillary
and we can make a further reduction to Tw ∼ Binom(Nw, α + β), where α is
known and β ≥ 0. The UMVU estimator Tw/Nw − α can be negative, so it
is dominated by (Tw/Nw − α)+ which has smaller loss almost surely. If the
UMVUE is inadmissible then so is any other unbiased estimator.

(d) (*) Now assume that the β parameter possibly varies by group. That is, πi,j =

α+
∑K

k=1 βk1{g(i) = g(j) = k}, whereα ∈ [0, 1] and β1, . . . , βK ∈ [0, 1−α]
are all unknown.

Assume we want to test the hypothesis H0 : β1 = . . . = βK = 0 against
the alternative H1 : maxk βk > 0. Assume we have an estimator β̂∗(X)
for the parameter β∗ = maxk βk, and we want to will use a test that rejects
for large values of β̂∗(X). How could we carry out an exact (finite-sample)
test using β̂∗ as the test statistic? You do not need to give an explicit formula
for the threshold, but explain how you would calculate it either in words or
pseudocode.

Solution:

Under H0, all edges have the same chance of occurring, so T+ = Tw + Tb is
complete sufficient and the conditional distribution given T+ = t is uniform
over all configurations with exactly t total edges. Sampling from this condi-
tional distribution is equivalent to permuting the

(
m
2

)
total Xi,j values.

To be more precise, we can generate B graphs by placing t edges uniformly at
random and calculate θ̂∗b based on the bth such graph. The exact permutation
p-value is 1

1+B

∑
b 1{θ̂∗b ≥ θ̂∗(X)}.
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4. Estimation in the Geometric model (25 points, 5 points / part).

Some useful facts for this problem:

• The geometric distribution Geom(θ) with parameter θ ∈ (0, 1) has probabil-
ity mass function

pθ(x) = Pθ(X = x) = (1− θ)xθ, for x ∈ {0, 1, 2, . . .}.

Its mean and variance are

Eθ[X] =
1− θ
θ

, Varθ(X) =
1− θ
θ2

.

The geometric distribution arises when a coin lands heads with probability
θ, and we flip it repeatedly until it lands heads. Then, the number of tails we
see before the first heads is a Geom(θ) random variable.

Assume throughout this problem that we observe X1, . . . , Xn
i.i.d.∼ Geom(θ).

(a) Find a minimal sufficient statistic for the distribution. Is it complete?

Solution:
The likelihood can be written as e

∑
i xi log(1−θ)+n log θ, a one-parameter expo-

nential family with natural parameter η = log(1−θ) that ranges over (−∞, 0).
The family is full-rank, so

∑
iXi (or equivalently X = 1

n

∑
iXi) is a com-

plete sufficient statistic and therefore also minimal sufficient.

(b) Let θ̂(X) denote the maximum likelihood estimator for θ, whereX = (X1, . . . , Xn).
Give an explicit formula.

Solution:
The MLE in an exponential family solves X = EθX = 1−θ

θ . Solving the
equation gives θ̂ = 1

1+X
.

(c) Show that θ̂(X) is consistent and use it to construct a Wald confidence interval
for θ. Give an explicit formula.

Solution:
By the law of large numbers, we have X

p→ 1−θ
θ > 0, and f(x) = 1

1+x is
continuous for x > 0. Hence, we have

θ̂(X) = f(X)
p→ f

(
1− θ
θ

)
= θ,
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by the continuous mapping theorem.

The score is ˙̀(θ;X) = n
(
− X

1−θ + 1
θ

)
, and its variance is

Jn(θ) =
nVarθ(X1)

(1− θ)2
=

n

(1− θ)θ2
.

If we estimate Jn by Ĵn = n
(1−θ̂)θ̂2

, then we obtain the Wald confidence interval

θ̂ ± Ĵ−1/2
n zα/2 = θ̂ ±

√
(1− θ̂)θ̂2

n
zα/2.

(d) Define the tail probability τk(θ) = (1 − θ)k to be the probability that a single
observation is at least k. That is,

τk(θ) = Pθ(X1 ≥ k) = (1− θ)k.

Give the asymptotic distribution for the maximum likelihood estimator τ̂k(X) =
τk(θ̂(X)) when k is fixed and n→∞ (appropriately centered and scaled).

Solution:
We use delta method here for the function τk(θ) = (1− θ)k. Because

√
n(θ̂−

θ)⇒ N(0, θ2(1− θ)), we have
√
n (τ̂k − τk)⇒ N(0, τ̇k(θ)

2θ2(1− θ)) = N(0, k2(1− θ)2k−1θ2)

(e) (*) Assume that n = 4, and (X1, X2, X3, X4) = (0, 3, 4, 2). Evaluate the
UMVU estimator for τ10(θ) on the given data set. Your answer should be a
number, and you should justify how you calculated it.

Solution:

An unbiased estimator would be 1{X1 ≥ 10}, so Rao-Blackwellizing it gives
the UMVU estimator

P[X1 ≥ 10 |
∑
i

Xi],

which is exactly zero in this case, since we must have X1 ≤
∑

iXi = 9.
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