

Outline

- 1) Multiple Testing
- 2) Familywise error rate control
- 3) Stepdown multiple testing
- 4) Simultaneous intervals / deduced inference
- 5) False Discovery Rate control
- 6) Benjamini - Hochberg Procedure

Multiple Testing

In many testing problems, we want to test many hypotheses at a time, e.g.

- Test $H_{0j}: \beta_j = 0$ for $j=1, \dots, d$ in linear regression
- Test whether each of $2M$ single nucleotide polymorphisms (SNPs) is associated with a given phenotype (e.g., diabetes / schizophrenia)
- Test whether each of 2000 web site tweaks affects user engagement

Setup: $X \sim P_\theta \in \mathcal{P}$ $H_{0i}: \Theta \in \bigcap_{0i}, i=1, \dots, m$
(Commonly, $H_{0i}: \Theta_i = 0$)

Goal: Return accept/reject decision for each i .

Let $\mathcal{R}(x) = \{i: H_{0i} \text{ rejected}\} \subseteq \{1, \dots, m\}$
 $\mathcal{A}_0(\Theta) = \{i: H_{0i} \text{ true}\}$

$$R(x) = |\mathcal{R}(x)|, m_0 = |\mathcal{A}_0|$$

Familywise Error Rate

Problem: Even if all H_{0i} true, might have

$$P(\text{any } H_{0i} \text{ rejected}) \gg \alpha$$

Ex $X_i \stackrel{\text{ind.}}{\sim} N(\theta_i, 1) \quad i=1, \dots, m. \quad H_{0i}: \theta_i = 0$

$$P_{\Theta}(\text{any } H_{0i} \text{ rejected}) = 1 - (1 - \alpha)^m \rightarrow 1$$

Is this a problem? Yes, if all attention will be focused on the (false) rejections and none on the (correct) non-rejections.

Classical solution is to control the familywise error rate (FWER):

$$\begin{aligned} \text{FWER}_{\Theta} &= P_{\Theta}(\text{any false rejections}) \\ &= P_{\Theta}(R \cap \mathcal{X}_0 \neq \emptyset) \end{aligned}$$

Want $\sup_{\Theta \in \mathbb{H}} \text{FWER}_{\Theta} \leq \alpha$

Typically achieved by "correcting" marginal p-values $p_1(x), \dots, p_m(x)$ ($p_i \stackrel{H_{0i}}{\geq} U[0, 1]$)
e.g., $p_i(x) = 2(1 - \mathbb{E}(1|X_i|))$ for Gaussian

Bonferroni Correction

Assume p_1, \dots, p_m are p-values for $H_{0,1}, \dots, H_{0,m}$
with $p_i \in [0, 1]$ under $H_{0,i}$

For general dependence, can guarantee control
by rejecting $H_{0,i}$ iff $p_i \leq \frac{\alpha}{m}$:

$$\begin{aligned} P_{\theta}(\text{any false rejections}) &= P_{\theta}\left(\bigcup_{i \in \mathcal{H}_0} \{H_{0,i} \text{ rejected}\}\right) \\ &\leq \sum_{i \in \mathcal{H}_0} P_{\theta}(H_{0,i} \text{ rejected}) \\ &\leq m_0 \cdot \frac{\alpha}{m} \leq \alpha \end{aligned}$$

If p-values independent, can improve to
 $\tilde{\alpha}_m = 1 - (1 - \alpha)^{1/m}$ (Šidák correction)

$$\begin{aligned} \text{Then } P_{\theta}(\text{no false rejections}) &= \prod_{i \in \mathcal{H}_0} P_{\theta}(p_i > \tilde{\alpha}_m) \\ &\geq (1 - \tilde{\alpha}_m)^{m_0} \geq 1 - \alpha \end{aligned}$$

For small α , $1 - \tilde{\alpha}_m = (1 - \alpha)^{1/m} \approx 1 - \frac{\alpha}{m}$
 \Rightarrow Šidák doesn't improve much on Bonferroni

Holm's Procedure

We can directly improve on Bonferroni by using a step-down procedure

First, order p-values $p_{(1)} \leq p_{(2)} \leq \dots \leq p_{(m)}$

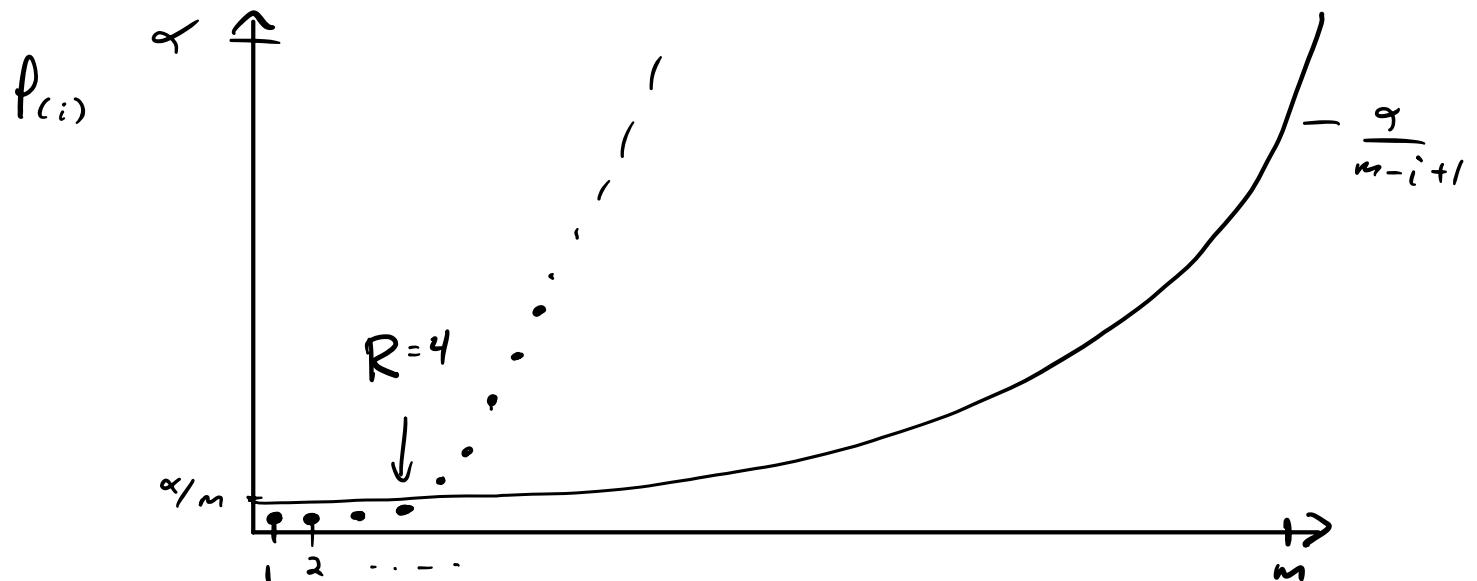
Order hyp. to match: $H_{(1)}, H_{(2)}, \dots, H_{(m)}$

Holm's step-down procedure

1. If $p_{(1)} \leq \frac{\alpha}{m}$, reject $H_{(1)}$ and continue.
Else, accept $H_{(1)}, \dots, H_{(m)}$ and halt.
2. If $p_{(2)} \leq \frac{\alpha}{(m-1)}$, reject $H_{(2)}$ and continue.
Else, accept $H_{(2)}, \dots, H_{(m)}$ and halt.
- ⋮
- m. If $p_{(m)} \leq \alpha$, reject $H_{(m)}$. Else accept $H_{(m)}$

More compactly: $R = \max \{ r : p_{(i)} \leq \frac{\alpha}{m-i+1}, \forall i \leq r \}$

Reject $p_{(1)}, \dots, p_{(R)}$



Prop Holm's procedure controls FWER at level α

Proof Let $p_0^* = \min \{p_i : i \in \mathcal{H}_{0i}\}$

$\mathbb{P}(p_0^* \leq \frac{\alpha}{m_0}) \leq \alpha$ by union bound.

Suppose $p_0^* > \frac{\alpha}{m_0}$, want to show no false rejections

Let $k = \#\{i : p_i \leq p_0^*\} \leq m - m_0 + 1$

Note $p_{(k)} = p_0^* > \frac{\alpha}{m_0} \geq \frac{\alpha}{m - k + 1}$

So $R < k \Rightarrow p_0^* > p_{(R)} \Rightarrow$ No false rej-s

Holm's procedure strictly dominates Bonferroni.

A different stepdown procedure dominates Šidák when p-values are indep.

1. If $p_{(1)} \leq \tilde{\alpha}_m$, reject $H_{(1)}$ & continue
2. If $p_{(2)} \leq \tilde{\alpha}_{m-1}$, reject $H_{(2)}$ & continue
- ...
m. If $p_{(m)} \leq \alpha$, reject $H_{(m)}$

There is a general framework for making such improvements, called the closure principle

Closure Principle

Assume we can construct a (marginal) level α test for every intersection null hypothesis: for $S \subseteq \{1, \dots, m\}$

$$H_{0S} : \theta \in \bigcap_{i \in S} H_{0i}$$

e.g., reject H_{0S} if $\min_{i \in S} p_i \leq \alpha_{|S|}$

Step 1. Provisionally reject H_{0S} if the marginal test rejects

Step 2. Reject H_{0i} if H_{0S} rejected for all $S \ni i$

Prop This two-step procedure controls FWER

Proof $P(\text{any false rejections})$

$$\leq P(H_{0S} \text{ rejected in Step 1})$$

$$= \alpha$$

Testing with dependence

Bonferroni isn't much worse than Šidák,
e.g. $\alpha = 5\%$ $m = 20$: .0025 vs .00256

But when tests are highly dependent, can often do much better.

Ex. Scheffé's S-method

$$X \sim N_d(\theta, I_d) \quad \theta \in \mathbb{R}^d$$

$$H_{0,\lambda} : \theta' \lambda = 0 \quad \text{for } \lambda \in S^{d-1} \quad ("m" = \infty) \quad (\alpha = 5\%)$$

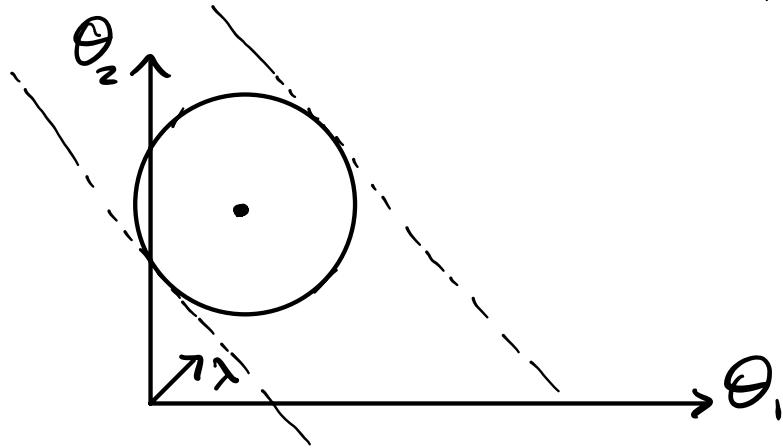
Reject $H_{0,\lambda}$ if $\|X' \lambda\|^2 \geq \chi_d^2(\alpha) \approx d + 3\sqrt{d}$

Controls FWER:

$$\sup_{\lambda: \theta' \lambda = 0} \|X' \lambda\|^2 \leq \sup_{\lambda} \|(X - \theta)' \lambda\|^2 \sim \chi_d^2(\alpha)$$

Can view as deduction from confidence region

$$C(X) = \{ \theta : \|\theta - X\|^2 \leq \chi_d^2(\alpha) \}$$



Deduced inference

Given any joint confidence region $C(x)$ for $\Theta \in \Theta$, we may freely assume $\Theta \in C(x)$ and "deduce" any and all implied conclusions without any FWER inflation

$$P_{\theta}(\text{any deduced inference is wrong}) \leq P_{\theta}(\Theta \notin C(x)) \leq \alpha$$

Deduction is often a good paradigm for deriving simultaneous intervals

We say $C_1(x), \dots, C_m(x)$ are simultaneous $1-\alpha$ confidence intervals

for $g_1(\Theta), \dots, g_m(\Theta)$ if

$$P_{\theta}(g_i(\Theta) \in C_i(x), \forall i=1, \dots, m) \geq 1-\alpha$$

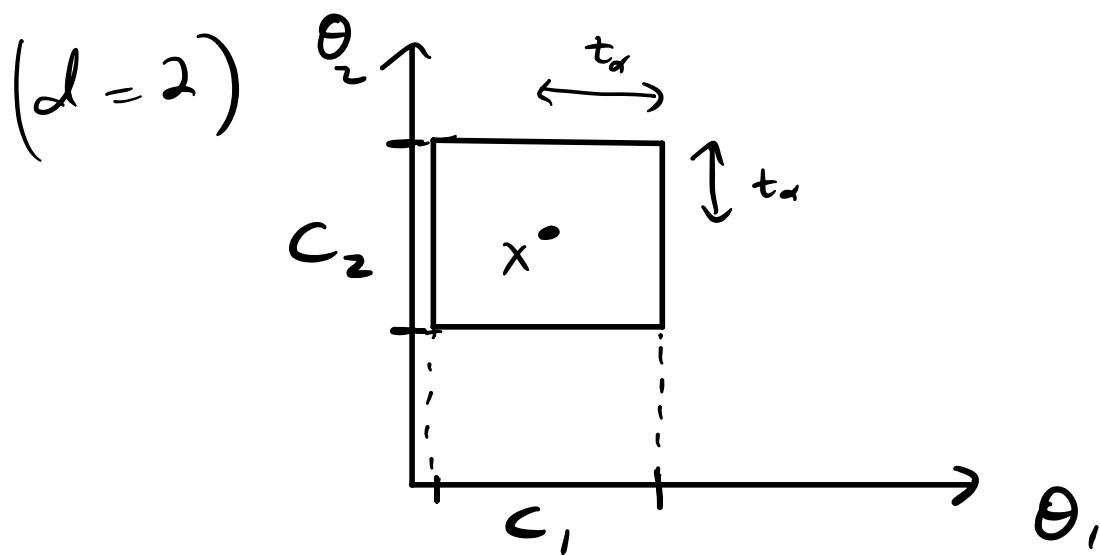
Ex Simultaneous intervals for multivar. Gaussian

Assume $X \sim N_d(\Theta, \Sigma)$, Σ known, $\Sigma_{ii} = 1$

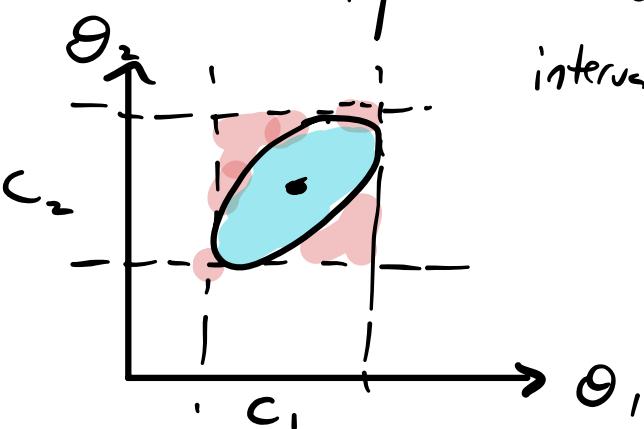
Let t_α = upper- α quantile of $\|X - \Theta\|_\infty$

$$\begin{aligned} C(X) &= \{\Theta : |\Theta_i - X_i| \leq c_\alpha, \forall i\} \\ &= (X_1 \pm t_\alpha) \times (X_2 \pm t_\alpha) \times \cdots \times (X_d \pm t_\alpha) \\ &= C_1(X_1) \times \cdots \times C_d(X_d) \end{aligned}$$

$$P_\Theta(C_i(x) \neq \Theta_i, \text{any } i) = P_\Theta(\Theta \notin C(X)) = \alpha$$



Note we could have instead constructed an elliptical conf. region, but then the intervals would be conservative.



$$P(\text{light blue region}) = 1 - \alpha$$

$$P(\Theta_1 \in C_1, \Theta_2 \in C_2) =$$

$$P(\text{light blue} + \text{pink}) > 1 - \alpha$$

Ex Linear regression n obs, d variables

$X \in \mathbb{R}^{n \times d}$ design $\Rightarrow \hat{\beta} \sim N_d(\beta, \sigma^2 (X'X)^{-1})$

Estimate $\hat{\sigma}^2 = \text{RSS}/(n-d) \perp\!\!\!\perp \hat{\beta}$

Then $\frac{\hat{\beta} - \beta}{\hat{\sigma}} = \frac{Z}{\sqrt{V/(n-d)}}$

where $Z = (\hat{\beta} - \beta)/\sigma \sim N_d(0, (X'X)^{-1})$

$$V = \text{RSS}/\sigma^2 \sim \chi^2_{n-d}$$

$Z \perp\!\!\!\perp V \Rightarrow$ Distr. of $\frac{\hat{\beta} - \beta}{\hat{\sigma}}$ fully known.

Assume wlog $((X'X)^{-1})_{jj} = 1 \quad \forall j$

Let t_α denote upper- α quantile of $\|\frac{\hat{\beta} - \beta}{\hat{\sigma}}\|_\infty$.

Then $C_j = \hat{\beta}_j \pm \hat{\sigma} t_\alpha$ are simultaneous CIs

for $\hat{\beta}_j, j=1, \dots, d$. (Compute t_α by simulation)

$$P(\beta_j \in C_j, \forall j) = P(|\hat{\beta}_j - \beta_j| \leq \hat{\sigma} t_\alpha, \forall j) = 1 - \alpha.$$

False Discovery Rate (FDR)

Motivation: Suppose we test 10,000 hypotheses with independent test statistics, all at level $\alpha = 0.001$. We expect 10 rejections just by chance. What if we get 50? Probably only $\approx 20\%$ of them are false rejections.

Can we accept 10 false rejections as long as most rejections are valid?

Benjamini & Hochberg (95) proposed a more liberal error control criterion, called FDR

$$R(X) = \# \mathcal{R}(X) \quad \# \text{rejections/`discoveries'}$$

$$V(X; \theta) = \#(\mathcal{R}(X) \cap \mathcal{R}_0(\theta)) \quad \# \text{false discoveries}$$

The false discovery proportion (FDP) is

$$FDP = \frac{V}{R} \quad \text{where} \quad \mathbb{P}_0 \equiv 0 \quad \left(\frac{V}{R \mathbb{P}_1} \right)$$

$$\text{The FDR is } \mathbb{E}_0[FDP] = \mathbb{E}_0\left[\frac{V}{R \mathbb{P}_1}\right]$$

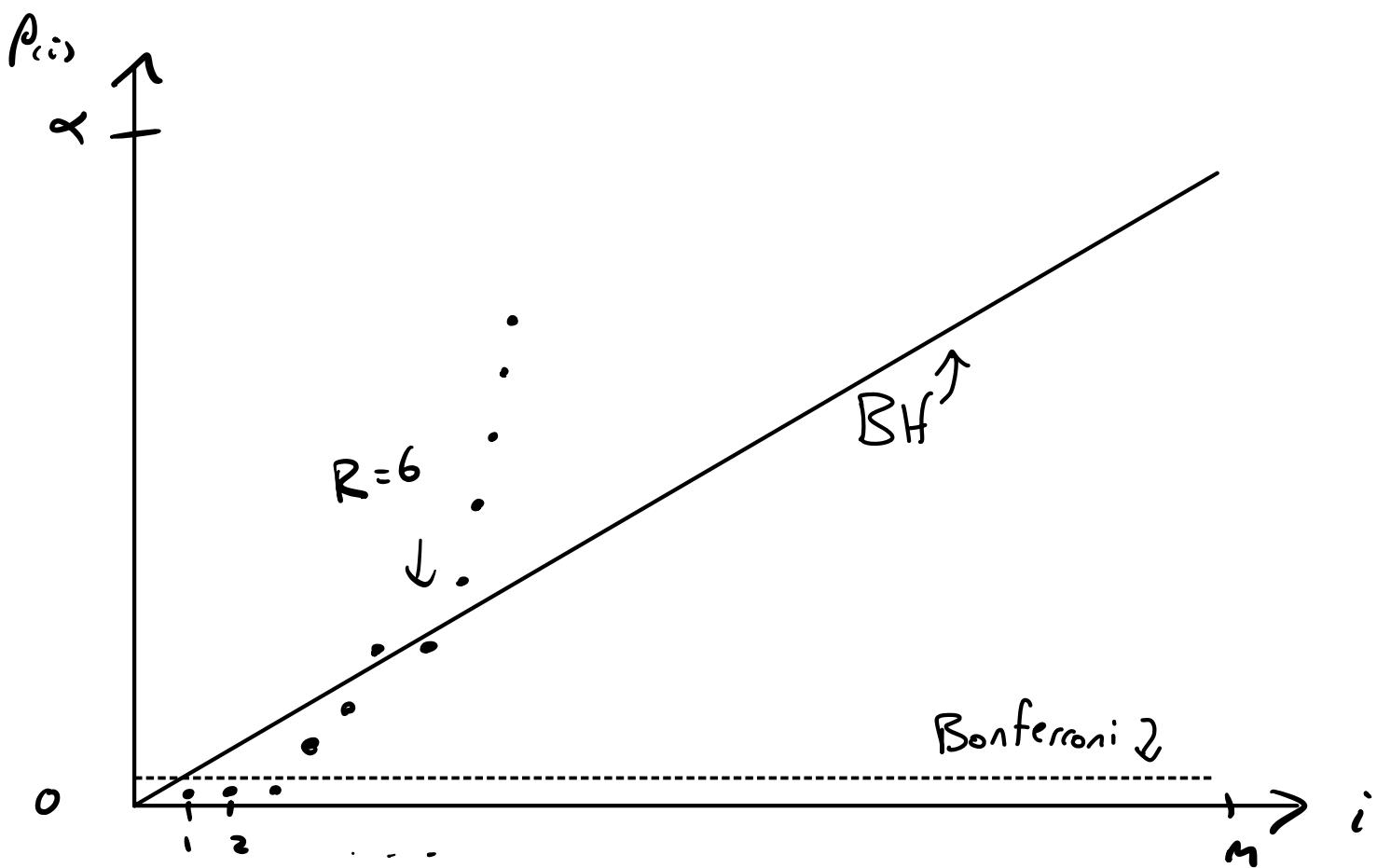
Benjamini-Hochberg Procedure

B & H also proposed a method to control FDR

given ordered p -values $p_{(1)} \leq p_{(2)} \leq \dots \leq p_{(m)}$:

$$R(X) = \max \{r : p_{(r)} \leq \frac{\alpha r}{m}\} \quad (\text{called } \underline{\text{step-up}} \text{ procedure})$$

Reject $H_{(1)}, \dots, H_{(R)}$



This is much more liberal than Bonf. procedure

when $1 \ll R \ll m$. BH rejects (at least)

r p -values if $p_{(r)} \leq \frac{\alpha}{m} \cdot r$

BH as empirical Bayes

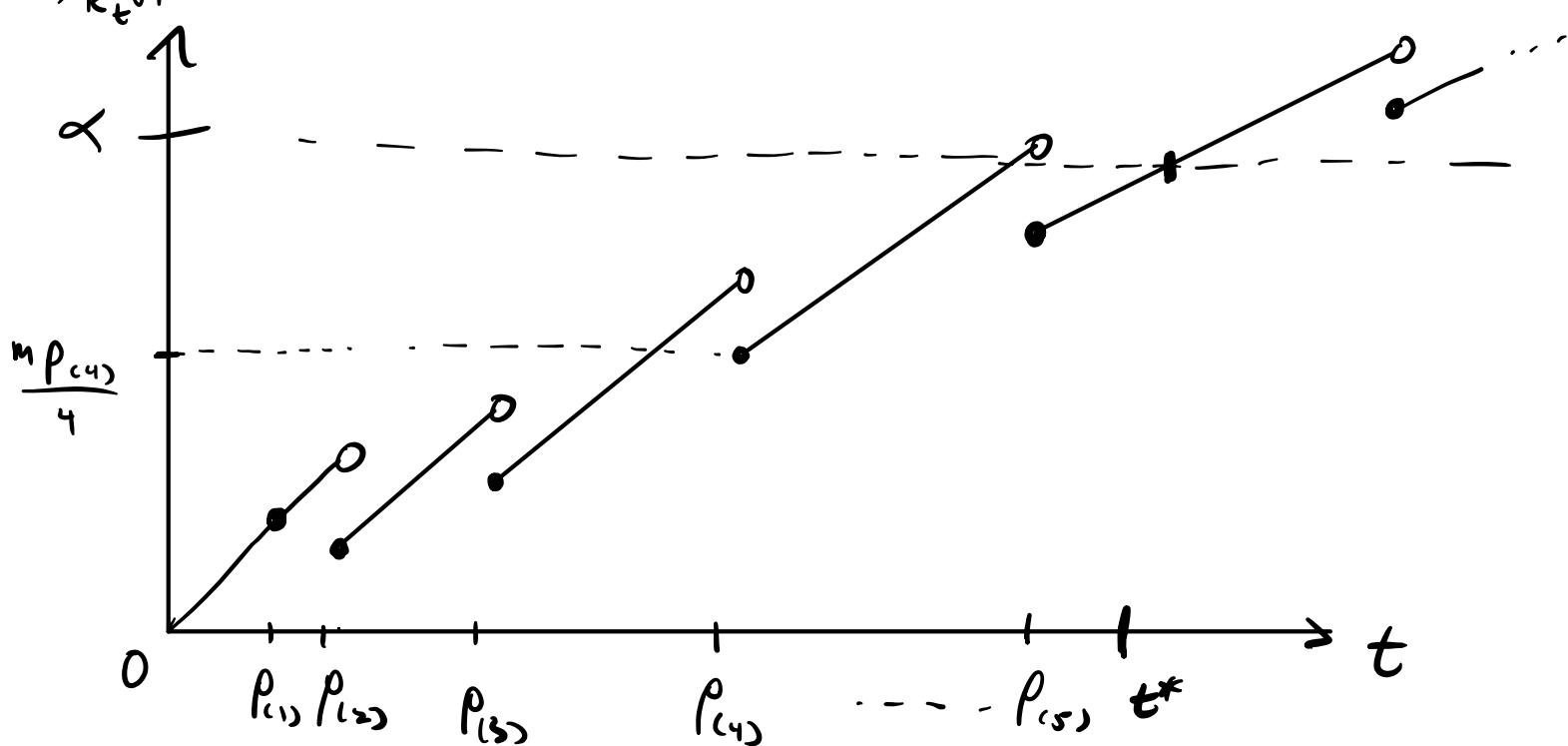
Equivalent formulation: for $R_t = \#\{i : p_i \leq t\}$,

let $\widehat{FDP}_t = \frac{mt}{R_t v l} \leftarrow \text{"estimate" of } V_t, \# \text{ false disc.}$

BH rejects H_i if $p_i \leq t^*(x) = \max\{t : \widehat{FDP}_t \leq \alpha\}$

Why?

\widehat{FDP}_t is continuously increasing in t ,
except at $p_{(i)}$ values, where it jumps down



Only values of t that matter for the algorithm

are $t = p_{(i)}$, where $\widehat{FDP}_t = \frac{m p_{(i)}}{i}$

$$\frac{m p_{(i)}}{i} \leq \alpha \Leftrightarrow p_{(i)} \leq \frac{\alpha i}{m}$$

FDR control

Elegant (but fragile) proof due to Storey, Taylor, & Sigmoid (2002)

Assume p_i indep., $p_i \sim U[0,1]$ $i \in \mathcal{H}_0$

Let $V_t = \#\{i \in \mathcal{H}_0 : p_i \leq t\}$

$$\begin{aligned} FDP_t &= \frac{V_t}{R_t + 1} \\ &= \widehat{FDP}_t \cdot \underbrace{\frac{V_t}{mt}}_{Q_t} \end{aligned}$$

$$\begin{aligned} \text{Then } FDR &= \mathbb{E}[FDP_{t^*}] \\ &= \mathbb{E}\left[\widehat{FDP}_{t^*} \cdot \frac{V_{t^*}}{mt^*}\right] \\ &= \alpha \cdot \mathbb{E}\left[\frac{V_{t^*}}{mt^*}\right] \quad (\widehat{FDP}_{t^*} \stackrel{a.s.}{=} \alpha) \end{aligned}$$

Note Q_t is a martingale when t runs backwards from $t=1$ to $t=0$:
 $s < t$:

$$\mathbb{E}[V_s \mid V_t = v]$$

$$= \mathbb{E}\left[\#\{i : p_i \leq s\} \mid \#\{i : p_i \leq t\} = v\right]$$

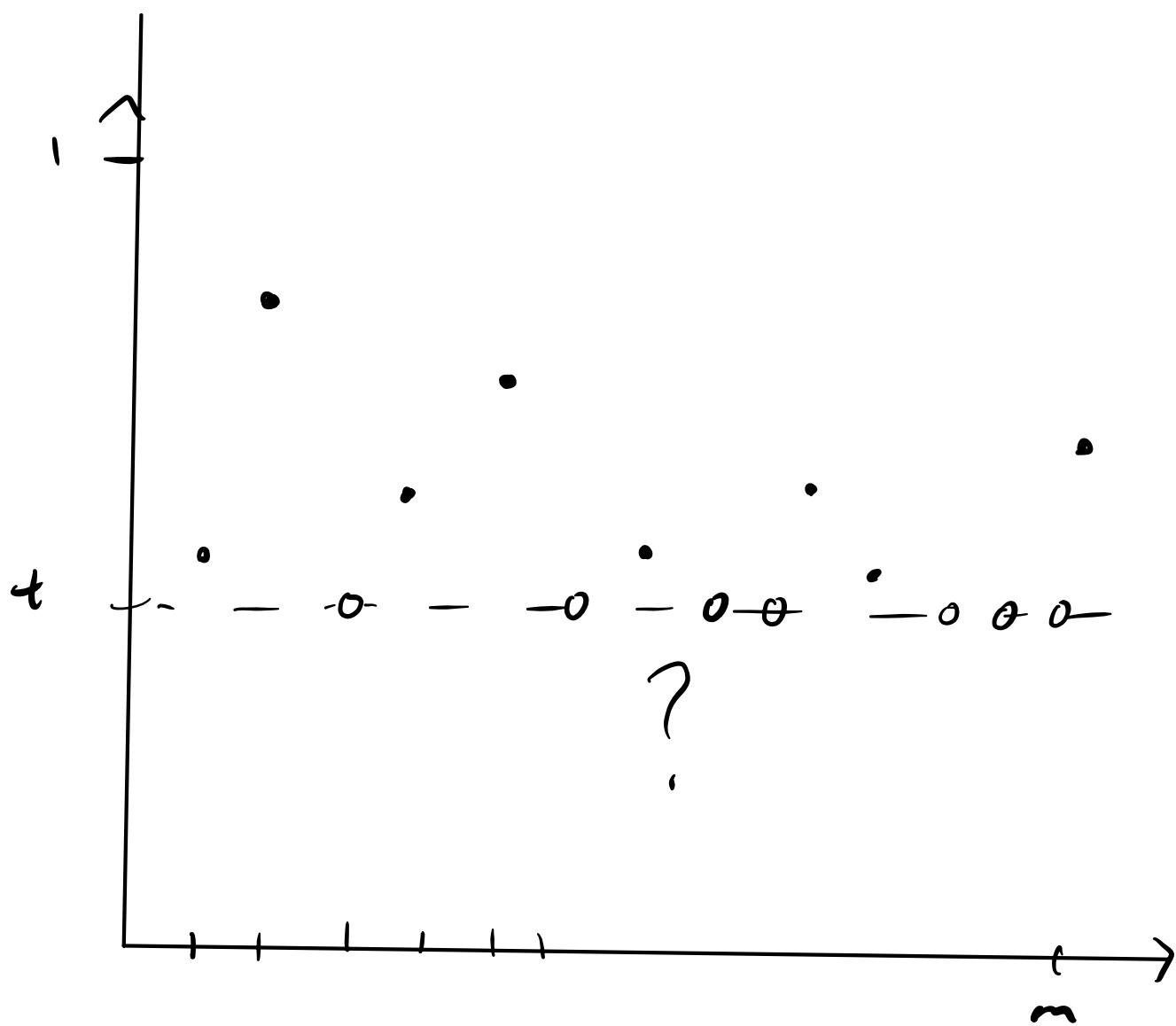
$$= v \cdot \frac{s}{t}$$

$$\mathbb{E}\left[\frac{V_s}{m_s} \mid \frac{V_t}{m_t} = \varrho\right] = \frac{1}{m_s} \cdot (q_{m t}) \cdot \frac{s}{t} = \varrho$$

And t^* is a stopping time wrt the filtration $\mathcal{F}_t = \sigma(p_1 v t, \dots, p_m v t)$
 (again, filtration with $t=1 \rightarrow t=0$)

$$\text{Why? For } s \geq t, \quad R_s = \#\{i : p_i \leq s\} \\ = \#\{i : p_i v t \leq s\}$$

$$\widehat{FDP}_s = \frac{ns}{R_s}$$



$$FDR = \alpha \mathbb{E}\left[\frac{V_{t^*}}{m_{t^*}}\right]$$

$$= \alpha \mathbb{E}\left[\frac{V_1}{m}\right]$$

$$= \alpha \frac{m_0}{m}$$

Remarks

- Proof only works if p-values indep., null ones exactly uniform
- More robust proof shows FDR controlled when null p-values conservative, can be extended to "positive dependence"
- FDR controlled under general dependence if we use corrected level α/L_m ,
$$L_m = \sum_{i=1}^m \frac{1}{i} \approx \log(m)$$